首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Degradation of aromatic hydrocarbons by aerobic bacteria is generally divided into an upper pathway, which produces dihydroxylated aromatic intermediates by the action of monooxygenases, and a lower pathway, which processes these intermediates down to molecules that enter the citric acid cycle. Bacterial multicomponent monooxygenases (BMMs) are a family of enzymes divided into six distinct groups. Most bacterial genomes code for only one BMM, but a few cases (3 out of 31) of genomes coding for more than a single monooxygenase have been found. One such case is the genome of Pseudomonas stutzeri OX1, in which two different monooxygenases have been found, phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO). We have already demonstrated that ToMO is an oligomeric protein whose subunits transfer electrons from NADH to oxygen, which is eventually incorporated into the aromatic substrate. However, no molecular data are available on the structure and on the mechanism of action of PH. To understand the metabolic significance of the association of two similar enzymatic activities in the same microorganism, we expressed and characterized this novel phenol hydroxylase. Our data indicate that the PH P component of PH transfers electrons from NADH to a subcomplex endowed with hydroxylase activity. Moreover, a regulatory function can be suggested for subunit PH M. Data on the specificity and the kinetic constants of ToMO and PH strongly support the hypothesis that coupling between the two enzymatic systems optimizes the use of nonhydroxylated aromatic molecules by the draining effect of PH on the product(s) of oxidation catalyzed by ToMO, thus avoiding phenol accumulation.  相似文献   

2.
The pathways for degradation of aromatic hydrocarbons are constantly modified by a variety of genetic mechanisms. Genetic studies carried out with Pseudomonas stutzeri OX1 suggested that the tou operon coding for toluene o-xylene monooxygenase (ToMO) was recently recruited into a preexisting pathway that already possessed the ph operon coding for phenol hydroxylase (PH). This apparently resulted in a redundancy of enzymatic activities, because both enzymes are able to hydroxylate (methyl)benzenes to (methyl)catechols via the intermediate production of (methyl)phenols. We investigated the kinetics and regioselectivity of toluene and o-xylene oxidation using Escherichia coli cells expressing ToMO and PH complexes. Our data indicate that in the recombinant system the enzymes act sequentially and that their catalytic efficiency and regioselectivity optimize the degradation of toluene and o-xylene, both of which are growth substrates. The main product of toluene oxidation by ToMO is p-cresol, the best substrate for PH, which catalyzes its transformation to 4-methylcatechol. The sequential action of the two enzymes on o-xylene leads, via the intermediate 3,4-dimethylphenol, to the exclusive production of 3,4-dimethylcatechol, the only dimethylcatechol isomer that can serve as a carbon and energy source after further metabolic processing. Moreover, our data strongly support a metabolic explanation for the acquisition of the ToMO operon by P. stutzeri OX1. It is possible that using the two enzymes in a concerted fashion confers on the strain a selective advantage based on the ability of the microorganism to optimize the efficiency of the use of nonhydroxylated aromatic hydrocarbons, such as benzene, toluene, and o-xylene.  相似文献   

3.
Tinberg CE  Song WJ  Izzo V  Lippard SJ 《Biochemistry》2011,50(11):1788-1798
Phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 require three or four protein components to activate dioxygen for the oxidation of aromatic substrates at a carboxylate-bridged diiron center. In this study, we investigated the influence of the hydroxylases, regulatory proteins, and electron-transfer components of these systems on substrate (phenol; NADH) consumption and product (catechol; H(2)O(2)) generation. Single-turnover experiments revealed that only complete systems containing all three or four protein components are capable of oxidizing phenol, a major substrate for both enzymes. Under ideal conditions, the hydroxylated product yield was ~50% of the diiron centers for both systems, suggesting that these enzymes operate by half-sites reactivity mechanisms. Single-turnover studies indicated that the PH and ToMO electron-transfer components exert regulatory effects on substrate oxidation processes taking place at the hydroxylase actives sites, most likely through allostery. Steady state NADH consumption assays showed that the regulatory proteins facilitate the electron-transfer step in the hydrocarbon oxidation cycle in the absence of phenol. Under these conditions, electron consumption is coupled to H(2)O(2) formation in a hydroxylase-dependent manner. Mechanistic implications of these results are discussed.  相似文献   

4.
The pathways for degradation of aromatic hydrocarbons are constantly modified by a variety of genetic mechanisms. Genetic studies carried out with Pseudomonas stutzeri OX1 suggested that the tou operon coding for toluene o-xylene monooxygenase (ToMO) was recently recruited into a preexisting pathway that already possessed the ph operon coding for phenol hydroxylase (PH). This apparently resulted in a redundancy of enzymatic activities, because both enzymes are able to hydroxylate (methyl)benzenes to (methyl)catechols via the intermediate production of (methyl)phenols. We investigated the kinetics and regioselectivity of toluene and o-xylene oxidation using Escherichia coli cells expressing ToMO and PH complexes. Our data indicate that in the recombinant system the enzymes act sequentially and that their catalytic efficiency and regioselectivity optimize the degradation of toluene and o-xylene, both of which are growth substrates. The main product of toluene oxidation by ToMO is p-cresol, the best substrate for PH, which catalyzes its transformation to 4-methylcatechol. The sequential action of the two enzymes on o-xylene leads, via the intermediate 3,4-dimethylphenol, to the exclusive production of 3,4-dimethylcatechol, the only dimethylcatechol isomer that can serve as a carbon and energy source after further metabolic processing. Moreover, our data strongly support a metabolic explanation for the acquisition of the ToMO operon by P. stutzeri OX1. It is possible that using the two enzymes in a concerted fashion confers on the strain a selective advantage based on the ability of the microorganism to optimize the efficiency of the use of nonhydroxylated aromatic hydrocarbons, such as benzene, toluene, and o-xylene.  相似文献   

5.
Toluene o-xylene monooxygenase (ToMO) and phenol hydroxylase (PH) of Pseudomonas stutzeri OX1 act sequentially in a recombinant upper pathway for the degradation of aromatic hydrocarbons. The catalytic efficiency and regioselectivity of these enzymes optimize the degradation of growth substrates like toluene and o-xylene. For example, the sequential monooxygenation of o-xylene by ToMO and PH leads to almost exclusive production of 3,4-dimethylcatechol (3,4-DMC), the only isomer that can be further metabolized by the P. stutzeri meta pathway. We investigated the possibility of producing ToMO mutants with modified regioselectivity compared with the regioselectivity of the wild-type protein in order to alter the ability of the recombinant upper pathway to produce methylcatechol isomers from toluene and to produce 3,4-DMC from o-xylene. The combination of mutant (E103G)-ToMO and PH increased the production of 4-methylcatechol from toluene and increased the formation of 3,4-DMC from o-xylene. These data strongly support the idea that the products and efficiency of the metabolic pathway can be controlled not only through mutations that increase the catalytic efficiency of the enzymes involved but also through tuning the substrate specificity and regioselectivity of the enzymes. These findings are crucial for the development of future metabolic engineering strategies.  相似文献   

6.
The four-component toluene/o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 is capable of oxidizing arenes, alkenes, and haloalkanes at a carboxylate-bridged diiron center similar to that of soluble methane monooxygenase (sMMO). The remarkable variety of substrates accommodated by ToMO invites applications ranging from bioremediation to the regio- and enantiospecific oxidation of hydrocarbons on an industrial scale. We report here the crystal structures of the ToMO hydroxylase (ToMOH), azido ToMOH, and ToMOH containing the product analogue 4-bromophenol to 2.3 A or greater resolution. The catalytic diiron(III) core resembles that of the sMMO hydroxylase, but aspects of the alpha2beta2gamma2 tertiary structure are notably different. Of particular interest is a 6-10 A-wide channel of approximately 35 A in length extending from the active site to the protein surface. The presence of three bromophenol molecules in this space confirms this route as a pathway for substrate entrance and product egress. An analysis of the ToMOH active site cavity offers insights into the different substrate specificities of multicomponent monooxygenases and explains the behavior of mutant forms of homologous enzymes described in the literature.  相似文献   

7.
Phenol hydroxylase (PH) belongs to a family of bacterial multicomponent monooxygenases (BMMs) with carboxylate-bridged diiron active sites. Included are toluene/o-xylene (ToMO) and soluble methane (sMMO) monooxygenase. PH hydroxylates aromatic compounds, but unlike sMMO, it cannot oxidize alkanes despite having a similar dinuclear iron active site. Important for activity is formation of a complex between the hydroxylase and a regulatory protein component. To address how structural features of BMM hydroxylases and their component complexes may facilitate the catalytic mechanism and choice of substrate, we determined X-ray structures of native and SeMet forms of the PH hydroxylase (PHH) in complex with its regulatory protein (PHM) to 2.3 A resolution. PHM binds in a canyon on one side of the (alphabetagamma)2 PHH dimer, contacting alpha-subunit helices A, E, and F approximately 12 A above the diiron core. The structure of the dinuclear iron center in PHH resembles that of mixed-valent MMOH, suggesting an Fe(II)Fe(III) oxidation state. Helix E, which comprises part of the iron-coordinating four-helix bundle, has more pi-helical character than analogous E helices in MMOH and ToMOH lacking a bound regulatory protein. Consequently, conserved active site Thr and Asn residues translocate to the protein surface, and an approximately 6 A pore opens through the four-helix bundle. Of likely functional significance is a specific hydrogen bond formed between this Asn residue and a conserved Ser side chain on PHM. The PHM protein covers a putative docking site on PHH for the PH reductase, which transfers electrons to the PHH diiron center prior to O2 activation, suggesting that the regulatory component may function to block undesired reduction of oxygenated intermediates during the catalytic cycle. A series of hydrophobic cavities through the PHH alpha-subunit, analogous to those in MMOH, may facilitate movement of the substrate to and/or product from the active site pocket. Comparisons between the ToMOH and PHH structures provide insights into their substrate regiospecificities.  相似文献   

8.
Toluene o-xylene monooxygenase (ToMO) and phenol hydroxylase (PH) of Pseudomonas stutzeri OX1 act sequentially in a recombinant upper pathway for the degradation of aromatic hydrocarbons. The catalytic efficiency and regioselectivity of these enzymes optimize the degradation of growth substrates like toluene and o-xylene. For example, the sequential monooxygenation of o-xylene by ToMO and PH leads to almost exclusive production of 3,4-dimethylcatechol (3,4-DMC), the only isomer that can be further metabolized by the P. stutzeri meta pathway. We investigated the possibility of producing ToMO mutants with modified regioselectivity compared with the regioselectivity of the wild-type protein in order to alter the ability of the recombinant upper pathway to produce methylcatechol isomers from toluene and to produce 3,4-DMC from o-xylene. The combination of mutant (E103G)-ToMO and PH increased the production of 4-methylcatechol from toluene and increased the formation of 3,4-DMC from o-xylene. These data strongly support the idea that the products and efficiency of the metabolic pathway can be controlled not only through mutations that increase the catalytic efficiency of the enzymes involved but also through tuning the substrate specificity and regioselectivity of the enzymes. These findings are crucial for the development of future metabolic engineering strategies.  相似文献   

9.
Many flavoenzymes catalyze hydroxylation of aromatic compounds especially phenolic compounds have been isolated and characterized. These enzymes can be classified as either single‐component or two‐component flavin‐dependent hydroxylases (monooxygenases). The hydroxylation reactions catalyzed by the enzymes in this group are useful for modifying the biological properties of phenolic compounds. This review aims to provide an in‐depth discussion of the current mechanistic understanding of representative flavin‐dependent monooxygenases including 3‐hydroxy‐benzoate 4‐hydroxylase (PHBH, a single‐component hydroxylase), 3‐hydroxyphenylacetate 4‐hydroxylase (HPAH, a two‐component hydroxylase), and other monooxygenases which catalyze reactions in addition to hydroxylation, including 2‐methyl‐3‐hydroxypyridine‐5‐carboxylate oxygenase (MHPCO, a single‐component enzyme that catalyzes aromatic‐ring cleavage), and HadA monooxygenase (a two‐component enzyme that catalyzes additional group elimination reaction). These enzymes have different unique structural features which dictate their reactivity toward various substrates and influence their ability to stabilize flavin intermediates such as C4a‐hydroperoxyflavin. Understanding the key catalytic residues and the active site environments important for governing enzyme reactivity will undoubtedly facilitate future work in enzyme engineering or enzyme redesign for the development of biocatalytic methods for the synthesis of valuable compounds.  相似文献   

10.
Aims:  The recombinant Antarctic Pseudoalteromonas haloplanktis TAC125 ( P. haloplanktis TAC/ tou ) expressing toluene- o- xylene monooxygenase (ToMO) can efficiently convert several aromatic compounds into their corresponding catechols in a broad range of temperature. When the genome of P. haloplanktis TAC125 was analysed in silico , the presence of a DNA sequence coding for a putative laccase-like protein was revealed. It is well known that bacterial laccases are able to oxidize dioxygenated aromatic compounds such as catechols.
Methods and Results:  We analysed the catabolic features, conferred by recombinant ToMO activity and the endogenous laccase enzymatic activity, of P. haloplanktis TAC/ tou engineered strain and its ability to grow on aromatic compounds as sole carbon and energy sources.
Conclusions:  Results presented highlight the broad potentiality of P. haloplanktis TAC/ tou cells expressing recombinant ToMO in bioremediation and suggest the use of this engineered Antarctic bacterium in the bioremediation of chemically contaminated marine environments and/or cold effluents.
Significance and Impact of the Study:  This paper demonstrates the possibility to confer new and specific degradative capabilities to a bacterium isolated from an unpolluted environment (Antarctic seawater) transforming it into a bacterium able to grow on phenol as sole carbon and energy source.  相似文献   

11.
Methane hydroxylation through methane monooxygenases (MMOs) is a key aspect due to their control of the carbon cycle in the ecology system and recent applications of methane gas in the field of bioenergy and bioremediation. Methanotropic bacteria perform a specific microbial conversion from methane, one of the most stable carbon compounds, to methanol through elaborate mechanisms. MMOs express particulate methane monooxygenase (pMMO) in most strains and soluble methane monooxygenase (sMMO) under copper-limited conditions. The mechanisms of MMO have been widely studied from sMMO belonging to the bacterial multicomponent monooxygenase (BMM) superfamily. This enzyme has diiron active sites where different types of hydrocarbons are oxidized through orchestrated hydroxylase, regulatory and reductase components for precise control of hydrocarbons, oxygen, protons, and electrons. Recent advances in biophysical studies, including structural and enzymatic achievements for sMMO, have explained component interactions, substrate pathways, and intermediates of sMMO. In this account, oxidation of methane in sMMO is discussed with recent progress that is critical for understanding the microbial applications of C-H activation in one-carbon substrates.  相似文献   

12.
Bacterial multicomponent monooxygenases (BMMs) are a heterogeneous family of di-iron monooxygenases which share the very interesting ability to hydroxylate aliphatic and/or aromatic hydrocarbons. Each BMM possesses defined substrate specificity and regioselectivity which match the metabolic requirements of the strain from which it has been isolated. Pseudomonas sp. strain OX1, a strain able to metabolize o-, m-, and p-cresols, produces the BMM toluene/o-xylene monooxygenase (ToMO), which converts toluene to a mixture of o-, m-, and p-cresol isomers. In order to investigate the molecular determinants of ToMO regioselectivity, we prepared and characterized 15 single-mutant and 3 double-mutant forms of the ToMO active site pocket. Using the Monte Carlo approach, we prepared models of ToMO-substrate and ToMO-reaction intermediate complexes which allowed us to provide a molecular explanation for the regioselectivities of wild-type and mutant ToMO enzymes. Furthermore, using binding energy values calculated by energy analyses of the complexes and a simple mathematical model of the hydroxylation reaction, we were able to predict quantitatively the regioselectivities of the majority of the variant proteins with good accuracy. The results show not only that the fine-tuning of ToMO regioselectivity can be achieved through a careful alteration of the shape of the active site but also that the effects of the mutations on regioselectivity can be quantitatively predicted a priori.  相似文献   

13.
The genes encoding the six polypeptide components of the alkene monooxygenase from Xanthobacter strain Py2 (Xamo) have been located on a 4.9-kb fragment of chromosomal DNA previously cloned in cosmid pNY2. Sequencing and analysis of the predicted amino acid sequences indicate that the components of Xamo are homologous to those of the aromatic monooxygenases, toluene 2-, 3-, and 4-monooxygenase and benzene monooxygenase, and that the gene order is identical. The genes and predicted polypeptides are aamA, encoding the 497-residue oxygenase alpha-subunit (XamoA); aamB, encoding the 88-residue oxygenase gamma-subunit (XamoB); aamC, encoding the 122-residue ferredoxin (XamoC); aamD, encoding the 101-residue coupling or effector protein (XamoD); aamE, encoding the 341-residue oxygenase beta-subunit (XamoE); and aamF, encoding the 327-residue reductase (XamoF). A sequence with >60% concurrence with the consensus sequence of sigma54 (RpoN)-dependent promoters was identified upstream of the aamA gene. Detailed comparison of XamoA with the oxygenase alpha-subunits from aromatic monooxygenases, phenol hydroxylases, methane monooxygenase, and the alkene monooxygenase from Rhodococcus rhodochrous B276 showed that, despite the overall similarity to the aromatic monooxygenases, XamoA has some distinctive characteristics of the oxygenases which oxidize aliphatic, and particularly alkene, substrates. On the basis of the similarity between Xamo and the aromatic monooxygenases, Xanthobacter strain Py2 was tested and shown to oxidize benzene, toluene, and phenol, while the alkene monooxygenase-negative mutants NZ1 and NZ2 did not. Benzene was oxidized to phenol, which accumulated transiently before being further oxidized. Toluene was oxidized to a mixture of o-, m-, and p-cresols (39.8, 18, and 41.7%, respectively) and a small amount (0.5%) of benzyl alcohol, none of which were further oxidized. In growth studies Xanthobacter strain Py2 was found to grow on phenol and catechol but not on benzene or toluene; growth on phenol required a functional alkene monooxygenase. However, there is no evidence of genes encoding steps in the metabolism of catechol in the vicinity of the aam gene cluster. This suggests that the inducer specificity of the alkene monooxygenase may have evolved to benefit from the naturally broad substrate specificity of this class of monooxygenase and the ability of the host strain to grow on catechol.  相似文献   

14.
Based on structural, biochemical, and genetic data, the soluble diiron monooxygenases can be divided into four groups: the soluble methane monooxygenases, the Amo alkene monooxygenase of Rhodococcus corallinus B-276, the phenol hydroxylases, and the four-component alkene/aromatic monooxygenases. The limited phylogenetic distribution of these enzymes among bacteria, together with available genetic evidence, indicates that they have been spread largely through horizontal gene transfer. Phylogenetic analyses reveal that the alpha- and beta-oxygenase subunits are paralogous proteins and were derived from an ancient gene duplication of a carboxylate-bridged diiron protein, with subsequent divergence yielding a catalytic alpha-oxygenase subunit and a structural beta-oxygenase subunit. The oxidoreductase and ferredoxin components of these enzymes are likely to have been acquired by horizontal transfer from ancestors common to unrelated diiron and Rieske center oxygenases and other enzymes. The cumulative results of phylogenetic reconstructions suggest that the alkene/aromatic monooxygenases diverged first from the last common ancestor for these enzymes, followed by the phenol hydroxylases, Amo alkene monooxygenase, and methane monooxygenases.  相似文献   

15.
Alkynes are mechanism-based inhibitors of several bacterial monooxygenases, including the soluble methane monooxygenase (sMMO) of Methylococcus capsulatus and the toluene o-monooxygenase (TOM) of Burkholderia cepacia G4. In this paper, we investigated the inhibition of the phenol hydroxylase of Pseudomonas sp. CF600 by the alkyne phenylacetylene. Growth of CF600 on phenol and phenol hydroxylase activity were inhibited by phenylacetylene concentrations greater than 1.0 mM. Unlike other alkynes, which irreversibly inhibit a number of monooxygenases, inhibition of phenol hydroxylase by phenylacetylene was reversible, as demonstrated by the ability of washed cells to regain phenol hydroxylase activity. Additionally, phenylacetylene was metabolized by phenol-grown cells, yielding a yellow meta-ring fission product which absorbed light maximally at 412 nm. Phenol-grown CF600 transformed phenylacetylene to hydroxyphenylacetylene and 2-hydroxy-6-oxo-octa-2,4-dien-7-ynoic acid as detected by gas chromatography–mass spectroscopy and high-performance liquid chromatography (HPLC), respectively, while neither a derivative of CF600 with a non-functional phenol hydroxylase nor wild-type CF600 grown on acetate transformed phenylacetylene. These results demonstrate that the phenol hydroxylase of CF600 has broader substrate specificity than previously reported. They also suggest that phenylacetylene acts as a competitive inhibitor rather than as a mechanism-based inhibitor of this phenol hydroxylase.  相似文献   

16.
Biocatalysis is today a standard technology for the industrial production of several chemicals, and the number of biotransformation processes running on a commercial scale is constantly increasing. Among biocatalysts, bacterial multicomponent monooxygenases (BMMs), a diverse group of nonheme diiron enzymes that activate dioxygen, are of primary interest due to their ability to catalyze a variety of complex oxidations, including reactions of mono- and dihydroxylation of phenolic compounds. In recent years, both directed evolution and rational design have been successfully used to identify the molecular determinants responsible for BMM regioselectivity and to improve their activity toward natural and nonnatural substrates. Toluene o-xylene monooxygenase (ToMO) is a BMM isolated from Pseudomonas sp. strain OX1 which hydroxylates a wide spectrum of aromatic compounds. In this work we investigate the use of recombinant ToMO for the biosynthesis in recombinant cells of Escherichia coli strain JM109 of 4-hydroxyphenylethanol (tyrosol), an antioxidant present in olive oil, from 2-phenylethanol, a cheap and commercially available substrate. We initially found that wild-type ToMO is unable to convert 2-phenylethanol to tyrosol. This was explained by using a computational model which analyzed the interactions between ToMO active-site residues and the substrate. We found that residue F176 is the major steric hindrance for the correct positioning of the reaction intermediate leading to tyrosol production into the active site of the enzyme. Several mutants were designed and prepared, and we found that the combination of different mutations at position F176 with mutation E103G allows ToMO to convert up to 50% of 2-phenylethanol into tyrosol in 2 h.  相似文献   

17.
Bacterial multicomponent monooxygenases (BMMs) are members of a wide family of diiron enzymes that use molecular oxygen to hydroxylate a variety of aromatic compounds. The presence of genes encoding for accessory proteins not involved in catalysis and whose role is still elusive, is a common feature of the gene clusters of several BMMs, including phenol hydroxylases and several soluble methane monooxygenases. In this study we have expressed, purified, and partially characterized the accessory component PHK of the phenol hydroxylase from Pseudomonas sp. OX1, a bacterium able to degrade several aromatic compounds. The phenol hydroxylase (ph) gene cluster was expressed in Escherichia coli/JM109 cells in the absence and in the presence of the phk gene. The presence of the phk gene lead to an increase in the hydroxylase activity of whole recombinant cells with phenol. PHK was assessed for its ability to interact with the active hydroxylase complex. Our results show that PHK is neither involved in the catalytic activity of the phenol hydroxylase complex nor required for the assembly of apo-hydroxylase. Our results suggest instead that this component may be responsible for enhancing iron incorporation into the active site of the apo-hydroxylase.  相似文献   

18.
The toluene/o-xylene monooxygenase cloned from Pseudomonas stutzeri OX1 displays a very broad range of substrates and a very peculiar regioselectivity, because it is able to hydroxylate more than one position on the aromatic ring of several hydrocarbons and phenols. The nucleotide sequence of the gene cluster coding for this enzymatic system has been determined. The sequence analysis revealed the presence of six open reading frames (ORFs) homologous to other genes clustered in operons coding for multicomponent monooxygenases found in benzene- and toluene-degradative pathways cloned from Pseudomonas strains. Significant similarities were also found with multicomponent monooxygenase systems for phenol, methane, alkene, and dimethyl sulfide cloned from different bacterial strains. The knockout of each ORF and complementation with the wild-type allele indicated that all six ORFs are essential for the full activity of the toluene/o-xylene monooxygenase in Escherichia coli. This analysis also shows that despite its activity on both hydrocarbons and phenols, toluene/ o-xylene monooxygenase belongs to a toluene multicomponent monooxygenase subfamily rather than to the monooxygenases active on phenols.  相似文献   

19.
Microbial degradation of aromatic hydrocarbons has been studied with the aim of developing applications for the removal of toxic compounds. Efforts have been directed toward the genetic manipulation of mesophilic bacteria to improve their ability to degrade pollutants, even though many pollution problems occur in sea waters and in effluents of industrial processes which are characterized by low temperatures. From these considerations the idea of engineering a psychrophilic microorganism for the oxidation of aromatic compounds was developed.In a previous paper it was demonstrated that the recombinant Antarctic Pseudoalteromonas haloplanktis TAC125 (PhTAC/tou) expressing a toluene-o-xylene monooxygenase (ToMO) is able to convert several aromatic compounds into corresponding catechols. In our work we improved the metabolic capability of PhTAC/tou cells by combining action of recombinant ToMO enzyme with that of the endogenous P. haloplanktis TAC125 laccase-like protein. This strategy allowed conferring new and specific degradative capabilities to a bacterium isolated from an unpolluted environment; indeed engineered PhTAC/tou cells are able to grow on aromatic compounds as sole carbon and energy sources. Our approach demonstrates the possibility to use the engineered psychrophilic bacterium for the bioremediation of chemically contaminated marine environments and/or cold effluents.  相似文献   

20.
Tetrahydrobiopterin and Biogenic Amine Metabolism in the hph-1 Mouse   总被引:6,自引:2,他引:4  
Abstract: hph-1 mice, which have defective tetrahydrobiopterin biosynthesis due to decreased GTP cyclohydrolase I activity, have been used to investigate the effects of tetrahydrobiopterin deficiency on aromatic l -amino acid monooxygenases and brain monoamine metabolism. Liver tetrahydrobiopterin levels were decreased, and tetrahydrobiopterin deficiency and reduced levels of dopamine, norepinephrine, serotonin, and their metabolites in the brain occurred both pre- and postnatally. Chronic subcutaneous tetrahydrobiopterin elevated brain levels to values higher than those seen in controls but had no effect on monoamine metabolism. In vivo activities of tyrosine hydroxylase and tryptophan hydroxylase were significantly decreased. There was a 30% decrease in the in vitro activity of striatal tyrosine hydroxylase and 50% decrease in liver phenylalanine hydroxylase. Western blotting demonstrated that the lower monooxygenase activities resulted from a reduced absolute amount of tyrosine hydroxylase and phenylalanine hydroxylase protein. The findings suggest involvement of tetrahydrobiopterin in the control of the steady-state concentration of the aromatic l -amino acid monooxygenases. In addition, demonstration of central monoamine changes in the hph-1 mouse make it a possible model system for the investigation of the neuropathological mechanisms in Dopa-responsive dystonia, which has recently been linked with mutations in the gene for GTP cyclohydrolase I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号