首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The sphingosine kinases, SK1 and SK2, produce the potent signaling lipid sphingosine-1-phosphate (S1P). These enzymes have garnered increasing interest for their roles in tumorigenesis, inflammation, vascular diseases, and immunity, as well as other functions. The sphingosine kinases are considered signaling enzymes by producing S1P, and their activity is acutely regulated by a variety of agonists. However, these enzymes are also key players in the control of sphingolipid metabolism. A variety of sphingolipids, such as sphingosine and the ceramides, are potent signaling molecules in their own right. The role of sphingosine kinases in regulating sphingolipid metabolism is potentially a critical aspect of their signaling function. A central aspect of signaling lipids is that their hydrophobic nature constrains them to membranes. Most enzymes of sphingolipid metabolism, including the enzymes that degrade S1P, are membrane enzymes. Therefore the localization of the sphingosine kinases and S1P is likely to be important in S1P signaling. Sphingosine kinase localization affects sphingolipid signaling in several ways. Translocation of SK1 to the plasma membrane promotes extracellular secretion of S1P. SK1 and SK2 localization to specific sites appears to direct S1P to intracellular protein effectors. SK localization also determines the access of these enzymes to their substrates. This may be an important mechanism for the regulation of ceramide biosynthesis by diverting dihydrosphingosine, a precursor in the ceramide biosynthetic pathway, from the de novo production of ceramide.  相似文献   

2.
Members of the sphingosine kinase (SK) family of lipid signaling enzymes, comprising SK1 and SK2 in humans, are receiving considerable attention for their roles in a number of physiological and pathophysiological processes. The SKs are considered signaling enzymes based on their production of the potent lipid second messenger sphingosine-1-phosphate, which is the ligand for a family of five G-protein-linked receptors. Both SK1 and SK2 are intracellular enzymes and do not possess obvious membrane anchor domains within their primary sequences. The native substrates (sphingosine and dihydrosphingosine) are lipids, as are the corresponding products, and therefore would have a propensity to be membrane associated, suggesting that specific membrane localization of the SKs could affect both access to substrate and localized production of product. Here, we consider the emerging picture of the SKs as enzymes localized to specific intracellular sites, sometimes by agonist-dependent translocation, the mechanism targeting these enzymes to those sites, and the functional consequence of that localization. Not only is the signaling output of the SKs affected by subcellular localization, but the role of these enzymes as metabolic regulators of sphingolipid metabolism may be impacted as well.  相似文献   

3.
Members of the sphingosine kinase (SK) family of lipid signaling enzymes, comprising SK1 and SK2 in humans, are receiving considerable attention for their roles in a number of physiological and pathophysiological processes. The SKs are considered signaling enzymes based on their production of the potent lipid second messenger sphingosine-1-phosphate, which is the ligand for a family of five G-protein-linked receptors. Both SK1 and SK2 are intracellular enzymes and do not possess obvious membrane anchor domains within their primary sequences. The native substrates (sphingosine and dihydrosphingosine) are lipids, as are the corresponding products, and therefore would have a propensity to be membrane associated, suggesting that specific membrane localization of the SKs could affect both access to substrate and localized production of product. Here, we consider the emerging picture of the SKs as enzymes localized to specific intracellular sites, sometimes by agonist-dependent translocation, the mechanism targeting these enzymes to those sites, and the functional consequence of that localization. Not only is the signaling output of the SKs affected by subcellular localization, but the role of these enzymes as metabolic regulators of sphingolipid metabolism may be impacted as well.  相似文献   

4.
Signal transduction via G-protein-coupled receptors (GPCRs) is a fundamental pathway through which the functions of an individual cell can be integrated within the demands of a multicellular organism. Since this family of receptors first discovered, the proteins that constitute this signaling cascade and their interactions with one another have been studied intensely. In parallel, the pivotal role of lipids in the correct and efficient propagation of extracellular signals has attracted ever increasing attention. This is not surprising given that most of the signal transduction machinery is membrane-associated and therefore lipid-related. Hence, lipid-protein interactions exert a considerable influence on the activity of these proteins. This review focuses on the post-translational lipid modifications of GPCRs and G proteins (palmitoylation, myristoylation, and isoprenylation) and their significance for membrane binding, trafficking and signaling. Moreover, we address how the particular biophysical properties of different membrane structures may regulate the localization of these proteins and the potential functional consequences of this phenomenon in signal transduction. Finally, the interactions that occur between membrane lipids and GPCR effector enzymes such as PLC and PKC are also considered.  相似文献   

5.
Signal transduction via G-protein-coupled receptors (GPCRs) is a fundamental pathway through which the functions of an individual cell can be integrated within the demands of a multicellular organism. Since this family of receptors first discovered, the proteins that constitute this signaling cascade and their interactions with one another have been studied intensely. In parallel, the pivotal role of lipids in the correct and efficient propagation of extracellular signals has attracted ever increasing attention. This is not surprising given that most of the signal transduction machinery is membrane-associated and therefore lipid-related. Hence, lipid-protein interactions exert a considerable influence on the activity of these proteins. This review focuses on the post-translational lipid modifications of GPCRs and G proteins (palmitoylation, myristoylation, and isoprenylation) and their significance for membrane binding, trafficking and signaling. Moreover, we address how the particular biophysical properties of different membrane structures may regulate the localization of these proteins and the potential functional consequences of this phenomenon in signal transduction. Finally, the interactions that occur between membrane lipids and GPCR effector enzymes such as PLC and PKC are also considered.  相似文献   

6.
Phosphoinositides make up only a small fraction of membrane phospholipids yet they are of outmost significance in regulating membrane-associated signaling processes. A large number of inositol lipid kinases and phosphatases have evolved to control the rapid production and elimination of these lipids at specific cellular membrane compartments. For a long period of time, the only information about the spatial aspect of inositol lipid metabolism relied upon the immunostaining of enzymes or cell fractionation of the enzyme activities that acted upon these lipids. Recent advances in the understanding of the nature of protein-inositol lipid interactions permitted the design of fluorescent molecular probes that can interact with inositol lipids in a specific manner allowing imaging of phosphoinositide dynamics in live cells. This approach has rapidly gained high popularity, but also provoked criticisms and debate about its limitations. In this review, we will summarize our experience with using these molecular tools and address some issues that most often come up in discussions concerning the usefulness and drawbacks of this technique. The most important value of these debates is that they also challenge our preconceived views of how phosphoinositides regulate cellular functions.  相似文献   

7.
Cells signal through lipids that are produced by phospholipid (PL) and phosphoinositide (PIPn) metabolism involve three enzymatic processes: (i) ester and phosphodiester hydrolysis by phospholipases, (ii) monophosphate hydrolysis by phosphatases, and (iii) phosphorylation of hydroxy groups by kinases. Unregulated enzyme activity correlates with specific pathologies, which are specific targets for therapeutic intervention. A variety of reagents now permit monitoring of in vitro enzyme activity, spatiotemporal changes of intracellular lipid concentrations, and identification of lipid-protein interactions. This minireview summarizes a chemical biology approach that illustrates how chemically synthesized affinity probes can be used to characterize changes in lipid signaling in cellular and molecular biology.  相似文献   

8.
Lipid signaling   总被引:5,自引:0,他引:5  
Various lipids are involved in mediating plant growth, development and responses to biotic and abiotic cues, and their production is regulated by lipid-signaling enzymes. Lipid-hydrolyzing enzymes play a pivotal role both in the production of lipid messengers and in other processes, such as cytoskeletal rearrangement, membrane trafficking, and degradation. Studies on the downstream targets and modes of action of lipid signals in plants are still in their early stages but distinguishing features of plant lipid-based signaling are being recognized. Phospholipase D enzymes and phosphatidic acid may play a broader role in lipid signaling in plants than in other systems.  相似文献   

9.
Lipids are highly dynamic molecules that, due to their hydrophobicity, are spatially confined to membrane environments. From these locations, certain privileged lipids serve as signaling molecules. For understanding the biological functions of subcellular pools of signaling lipids, induced proximity tools have been invaluable. These methods involve controlled heterodimerization, by either small-molecule or light triggers, of functional proteins. In the arena of lipid signaling, induced proximity tools can recruit lipid-metabolizing enzymes to manipulate lipid signaling and create artificial tethers between organelle membranes to control lipid trafficking pathways at membrane contact sites. Here, we review recent advances in methodology development and biological application of chemical-induced and light-induced proximity tools for manipulating lipid metabolism, trafficking, and signaling.  相似文献   

10.
Sphingolipids are highly bioactive lipids. Sphingolipid metabolism produces key membrane components (e.g. sphingomyelin) and a variety of signaling lipids with different biological functions (e.g. ceramide, sphingosine-1-phosphate). The coordinated activity of tens of different enzymes maintains proper levels and localization of these lipids with key roles in cellular processes. In this review, we highlight the signaling roles of sphingolipids in cell death and survival. We discuss recent findings on the role of specific sphingolipids during these processes, enabled by the use of lipidomics to study compositional and spatial regulation of these lipids and synthetic sphingolipid probes to study subcellular localization and interaction partners of sphingolipids to understand the function of these lipids.  相似文献   

11.
Intracellular signaling proteins are very often regulated by site-specific phosphorylation. For example, growth factor receptors in eukaryotic cells contain intrinsic tyrosine kinase activity and use inter- and intra-molecular interactions to recruit and orient potential protein substrates for phosphorylation. Equally important in determining the magnitude and kinetics of such a response is protein dephosphorylation, catalysed by phosphatase enzymes. A growing body of evidence indicates that certain protein tyrosine phosphatases (PTPs), like tyrosine kinases, are affected by intermolecular interactions that alter the specific activity or localization of their catalytic domains. Using a detailed kinetic modeling framework, we theoretically explore the regulation of PTPs through their association with receptor tyrosine kinases, as noted for the Src homology 2-domain-containing PTPs, SHP-1 and -2. Receptor-PTP binding, in turn, is expected to influence the phosphorylation pattern of those receptors and proteins they associate with, and we show how PTPs might serve to co- or counter-regulate parallel pathways in a signaling network.  相似文献   

12.
The mitogen-activated protein kinase (MAPK) signaling pathway is activated in response to a variety of extracellular stimuli such as growth factor stimulation. The best-characterized MAPK pathway involves the sequential activation of Raf, MEK and ERK proteins, capable of regulating the gene expression required for cell proliferation. Binding to specific lipids can regulate both the subcellular localization of these MAPK signaling proteins as well as their kinase activities. More recently it has become increasingly clear that the majority of MAPK signaling takes place intracellularly on endosomes and that the perturbation of endocytic pathways has dramatic effects on the MAPK pathway. This review highlights the direct effects of lipids on the localization and regulation of MAPK pathway proteins. In addition, the indirect effects lipids have on MAPK signaling via their regulation of endocytosis and the biophysical properties of different membrane lipids as a result of growth factor stimulation are discussed. The ability of a protein to bind to both lipids and proteins at the same time may act like a "ZIP code" to target that protein to a highly specific microlocation and could also allow a protein to be "handed off" to maintain tight control over its binding partners and location.  相似文献   

13.
van Meer G 《The EMBO journal》2005,24(18):3159-3165
The cellular lipidome comprises over 1000 different lipids. Most lipids look similar having a polar head and hydrophobic tails. Still, cells recognize lipids with exquisite specificity. The functionality of lipids is determined by their local concentration, which varies between organelles, between the two leaflets of the lipid bilayer and even within the lateral plane of the membrane. To incorporate function, cellular lipidomics must not only determine which lipids are present but also the concentration of each lipid at each specific intracellular location in time and the lipid's interaction partners. Moreover, cellular lipidomics must include the enzymes of lipid metabolism and transport, their specificity, localization and regulation. Finally, it requires a thorough understanding of the physical properties of lipids and membranes, especially lipid-lipid and lipid-protein interactions. In the context of a cell, the complex relationships between metabolites can only be understood by viewing them as an integrated system. Cellular lipidomics provides a framework for understanding and manipulating the vital role of lipids, especially in membrane transport and sorting and in cell signaling.  相似文献   

14.
Signaling by distinct classes of phosphoinositide 3-kinases   总被引:25,自引:0,他引:25  
Many signaling pathways converge on and regulate phosphoinositide 3-kinase (PI3K) enzymes whose inositol lipid products are key mediators of intracellular signaling. Different PI3K isoforms generate specific lipids that bind to FYVE and pleckstrin homology (PH) domains in a variety of proteins, affecting their localization, conformation, and activities. Here we review the activation mechanisms of the different types of PI3Ks and their downstream actions, with focus on the PI3Ks that are acutely triggered by extracellular stimulation.  相似文献   

15.
Membranes are sites of intense signaling activity within the cell, serving as dynamic scaffolds for the recruitment of signaling molecules and their substrates. The specific and reversible localization of these signaling molecules to membranes is critical for the appropriate activation of downstream signaling pathways. Phospholipid-binding domains, including C1, C2, PH, and PX domains, play critical roles in the membrane targeting of protein kinases. Recent structural studies have identified a new membrane association domain, the Kinase Associated 1 (KA1) domain, which targets a number of yeast and mammalian protein kinases to membranes containing acidic phospholipids. Despite an abundance of localization studies on lipid-binding proteins and structural studies of the isolated lipid-binding domains, the question of how membrane binding is coupled to the activation of the kinase catalytic domain has been virtually untouched. Recently, structural studies on protein kinase C (PKC) have provided some of the first structural insights into the allosteric regulation of protein kinases by lipid second messengers.  相似文献   

16.
Protein and lipid kinases are two important classes of biomedically relevant enzymes. The expression and activity of many kinases are known to be dysregulated in a variety of diseases, and proteomic tools that can assess the presence and activity of these enzymes are likely to be useful for their evaluation. Because many of the mechanisms by which protein kinases can become unregulated involve post-translational modifications or changes in protein localization, they can only be detected by examining protein activity, sometimes within the context of the living cell. Wortmannin is a steroid-derived fungal metabolite that covalently inhibits both protein and lipid kinases. Here we describe the synthesis of three wortmannin derivatives, biotin-wortmannin, BODIPY-wortmannin, and tetramethylrhodamine-wortmannin. We demonstrate that these reagents exhibit reactivity similarly as wortmannin and react with members of the phosphatidylinositol 3-kinase and PI3-kinase related kinase families in cellular lysates. Moreover, in some cases these reagents can differentiate between the active and inactive forms of the enzyme, indicating that they are activity-based probes. The reagents also exhibit complementary properties. The biotin-wortmannin reagent is effective in the isolation of labeled proteins; all three can be used for protein labeling, and BODIPY-wortmannin is cell-permeable and can be used to label proteins within cells.  相似文献   

17.
18.
We have shown recently that polyclonal human milk sIgA contains a subfraction of antibodies (Abs) tightly bound to unusual minor milk lipids containing sialic acid. Here, we show that a small subfraction of milk IgG is tightly bound to the similar or the same minor lipids. The ability of small fractions of sIgA and IgG from human milk to phosphorylate selectively two minor lipids in the presence of [gamma-(32)P]nucleoside triphosphates was shown here for the first time to be an intrinsic property of these antibodies. In contrast to known kinases, antibodies with lipid kinase activity can transfer phosphoryl group to lipids not only from ATP but also from other different nucleotides (dATP, GTP, dGTP, UTP, TTP) with comparable efficiencies (30-100%). To our knowledge, there are no examples of enzymes using orthophosphate as a substrate of phosphorylation reactions. An extremely unusual property of lipid kinase Abs is their high affinity for orthophosphate (K(m)=1.6-5.6 microM) and capability to phosphorylate minor lipids using [(32)P]orthophosphate as donor of phosphate group. The relative specific activity and affinity of abzymes for orthophosphate and ATP depend significantly on donor milk. However, the levels of Ab-dependent phosphorylation of lipids for all Abs in the case of ATP (100%) and orthophosphate (60-80%) as substrates are comparable. The first example of natural abzymes with synthetic activity was milk sIgA with protein kinase activity. Most probably, lipid kinase sIgA and IgG of human milk are the second example of Abs with synthetic activity.  相似文献   

19.
Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking. [BMB Reports 2014; 47(7): 361-368]  相似文献   

20.
Diacylglycerol (DAG) and phosphatidic acid (PA) are lipids with unique functions as metabolic intermediates, basic membrane constituents, and second-signal components. Diacylglycerol kinases (DGK) regulate the levels of these two lipids, catalyzing the interconversion of one to the other. The DGK family of enzymes is composed of 10 isoforms, grouped into five subfamilies based on the presence of distinct regulatory domains. From its initial characterization as a type IV DGK to the generation of mouse models showing its importance in cardiac dysfunction and immune pathologies, diacylglycerol kinase ζ (DGKζ) has proved an excellent example of the critical role of lipid-metabolizing enzymes in the control of cell responses. Although the mechanism that regulates this enzyme is not well known, many studies demonstrate its subtle regulation and its strategic function in specific signaling and as part of adaptor protein complexes. These data suggest that DGKζ offers new opportunities for therapeutic manipulation of lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号