首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Morphine, enkephalins, nalorphine, naloxone and pentazocine are shown to have a peripheral analgesic effect. In our modification of the Randall-Selitto test these substances were 50–100 times more potent than a standard local anaesthetic, lidocaine. At this peripheral site, naloxone did not antagonize the effect of morphine. Morphine had a marked analgesic effect on the hyperalgesia induced by PGE2 and PGI2, BaCl2, Ca2+ ionophore A23187, isoprenaline but not on that induced by dibutyryl cyclic AMP. It was suggested that the peripheral analgesic effect of morphine is due to an inhibition of adenylate-cyclase activity.  相似文献   

2.
Morphine injected into the rat cerebral ventricles had a marked analgesic effect, while no effect was observed with pentazocine and naloxone or nalorphine caused a strong hyperalgesia. Administered systemically (IP) naloxone and nalorphine caused a transitory analgesia followed by a long lasting hyperalgesic effect; morphine and pentazocine showed only an analgesic effect. It was concluded that the site of analgesic action of opioid-antagonists is peripheral rather than central. The peptidase-resistant enkephalin-analog, BW 180c, which does not cross the blood brain barrier, caused a marked analgesia by IP administration to paws made hyperalgesic by PGE2 or carrageenin. It is suggested that agents derived from morphine, morphine-antagonists, enkephalins or cGMP devoid of central effect but having a strong peripheral effect may constitute a new class of safer analgesics.  相似文献   

3.
Morphine injected into the rat cerebral ventricles had a marked analgesic effect, while no effect was observed with pentazocine and naloxone or nalorphine caused a strong hyperalgesia. Administered systemically (IP) naloxone and nalorphine caused a transitory analgesia followed by a long lasting hyperalgesic effect; morphine and pentazocine showed only an analgesic effect. It was concluded that the site of analgesic action of opioid-antagonists is peripheral rather than central. The peptidase-resistant enkephalin-analog, BW 180c, which does not cross the blood brain barrier, caused a marked analgesia by IP administration to paws made hyperalgesic by PGE2 or carrageenin. It is suggested that agents derived from morphine, morphine-antagonists, enkephalins or cGMP devoid of central effect but having a strong peripheral effect may constitute a new class of safer analgesics.  相似文献   

4.
Pryor SC  Nieto F  Henry S  Sarfo J 《Life sciences》2007,80(18):1650-1655
The effects of the opiates morphine and morphine-6-glucuronide (M6G), the mu opioid receptor specific antagonist D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH(2) (CTOP), and the general opiate antagonist naloxone on the latency of response to thermal stimulation were determined in the parasitic nematode Ascaris suum. Thermal detection and avoidance behaviors of the worms were evaluated with a tail flick analgesia meter using a modification of a technique employed for nociception experiments in rodents. Morphine and M6G were shown to have a dose dependent analgesic effect on A. suum's latency of response to heat with morphine being the most potent. The analgesic effect of morphine was reversed by naloxone but not CTOP. Neither naloxone nor CTOP was able to block the analgesia of M6G. CTOP but not naloxone had significant analgesic effects on its own. These findings are generally consistent with previous results on the effects of opiates and nitric oxide release from A. suum tissue. Apparently these nematodes possess opioid receptors that effect nociception.  相似文献   

5.
Aung HH  Mehendale SR  Xie JT  Moss J  Yuan CS 《Life sciences》2004,74(22):2685-2691
Opioids are frequently used analgesics, and emesis is a common opioid-induced adverse effect. Methylnaltrexone, a peripheral opioid antagonist, has the potential to block the undesired effects of opioids that are mediated by peripheral receptors while sparing the analgesic effect. We used a rat model of simulated emesis or pica to study if methylnaltrexone decreases morphine induced-kaolin consumption. We observed that after morphine administration, kaolin intake increased significantly compared to intake in the vehicle group, and the increase could be attenuated by ondansetron administration. Methylnaltrexone dose-dependently reduced kaolin ingestion induced by morphine. Morphine and methylnaltrexone did not significantly affect food intake and body weight in the experimental animals. Our data suggest that methylnaltrexone has therapeutic value in treating opioid-induced nausea and vomiting.  相似文献   

6.
Comparison of physical dependence of ohmefentanyl stereoisomers in mice   总被引:2,自引:0,他引:2  
Guo GW  He Y  Jin WQ  Zou Y  Zhu YC  Chi ZQ 《Life sciences》2000,67(2):113-120
Stereo-structural difference of ohmefentanyl stereoisomers on analgesic action and receptor affinity has been studied. To assess the difference of ohmefentanyl stereoisomers in physical dependence, the potency of physical dependence was quantified by estimating the ED50 value of ohmefentanyl stereoisomers in the naloxone-precipitated jumping test in mice. Morphine was used to assess the method and as a drug of comparison. The results indicate that the degree of physical dependence of morphine can been quantified by estimating the ED50 value of morphine withdrawal jumping induced by naloxone. A significant difference was observed in withdrawal jumping ED50 values among ohmefentanyl stereoisomers. Of these isomers, F9202 and F9204 had similarly potent analgesic action, but very significant difference in naloxone precipitated withdrawal response. Dependent potency index of F9204 was 618-fold weaker than that of F9202. It is concluded that a stereo-structural difference in physical dependence is found to exist among ohmefentanyl stereoisomers. Compound F9204 displayed a strong analgesic action and weak physical dependent potency.  相似文献   

7.
本工作进一步探索中脑导水管周围灰质(PAG)在吗啡镇痛与纳洛酮拮抗吗啡镇痛中的作用。实验在清醒受限制的大鼠上进行,以电刺激鼠尾出现的甩尾和嘶叫为痛反应指标。结果表明:(1)侧脑室注射微量纳洛酮后,可使电刺激 PAG 或注射微量吗啡于 PAG 所引起的镇痛效应受到明显拮抗;(2)损毀 PAG 或注射微量纳洛酮于 PAG 后,可使由侧脑室注入微量吗啡所引起的镇痛效应显著减弱。由此可见 PAG 既是侧脑室注射吗啡镇痛作用的重要中枢部位,又是侧脑室注射纳洛酮拮抗吗啡镇痛的重要中枢部位。  相似文献   

8.
Y Waisman  H Marcus  M Ligumski  G Dinari 《Life sciences》1991,48(21):2035-2042
We studied the effect of parenteral morphine and naloxone administration on intestinal mucosal Prostaglandin E2 (PGE2) and 3',5' cyclic adenosine monophosphate (cAMP) levels and on indomethacin-induced intestinal ulceration in the rat. Compared to the control group, morphine significantly decreased whereas naloxone markedly increased both PGE2 and cAMP mucosal levels, respectively. Morphine or naloxone alone did not cause mucosal injury. However, when given with indomethacin, morphine significantly potentiated the ulcerogenic effect of indomethacin while naloxone exerted a protective effect. These results suggest that opioid peptides may play a role in modulation of intestinal mucosal PGE2 and cAMP levels. In addition, enhancement of indomethacin-induced ulcer formation by morphine and amelioration by naloxone might be in part mediated through their effect on mucosal PGE2 and cAMP levels.  相似文献   

9.
Prostaglandin hyperalgesia, V: a peripheral analgesic receptor for opiates   总被引:1,自引:0,他引:1  
Prostaglandin E2 injected in the rat paw causes hyperalgesia which is antagonized by local injections of opiate and opiate antagonists. In the present investigation in rats it is shown that naloxone has an analgesic effect at doses as low as 2 micrograms/site, injected into the rat hind paw. At a dose that has no analgesic effect (1 microgram/site) naloxone antagonized the analgesia produced by either local or systemic administration of morphine. Local administration of levorphanol (50 micrograms/site) caused a 50% reduction in the intensity of the hyperalgesia induced by prostaglandin E2. A dose four times greater of its isomer, dextrorphan, had little analgesic effect. The present results support the suggestion that this peripheral analgesia is the result of an action of opiates in receptors located at the nociceptors.  相似文献   

10.
ED50s were determined for morphine, nalorphine, butorphanol and pentazocine induced hyperthermia in rats. Morphine produced a significant hyperthermia with the doses of 5–160 mg.kg in rats. The peak hyperthermic effect was found 1 hr after 5–20 mg/kg doses of morphine. Nalorphine, butorphanol and pentazocine produced biphasic effects on rectal temperature. Initially they produced a dose-dependent hyperthermia and later hypothermia. In a comparison of the hyperthermic ED50's of morphine, nalorphine, butorphanol and pentazocine it was found that butorphanol is more active than the others (ED50s were 4.7, 4.3, 0.54 and 11.5 mg/kg respectively). The narcotic antagonist naloxone significantly inhibited both morphine and antagonist type analgesic induced hyperthermia. These results suggests that a different mechanism(s) is involved in the hyperthermic actions of antagonist type analgesics and agonist drugs.  相似文献   

11.

Background

Morphine and its derivatives are key drugs in pain control. Despite its well-known analgesic properties morphine at high concentrations may be proalgesic. Particularly, short-lasting painful sensations have been reported upon dermal application of morphine. To study a possible involvement of TRP receptors in the pro-nociceptive effects of morphine (0.3 – 10 mM), two models of nociception were employed using C57BL/6 mice and genetically related TRPV1 and TRPA1 knockout animals, which were crossed and generated double knockouts. Hindpaw skin flaps were used to investigate the release of calcitonin gene-related peptide indicative of nociceptive activation.

Results

Morphine induced release of calcitonin gene-related peptide and sensitized the release evoked by heat or the TRPA1 agonist acrolein. Morphine activated HEK293t cells transfected with TRPV1 or TRPA1. Activation of C57BL/6 mouse dorsal root ganglion neurons in culture was investigated with calcium imaging. Morphine induced a dose-dependent rise in intracellular calcium in neurons from wild-type animals. In neurons from TRPV1 and TRPA1 knockout animals activation by morphine was markedly reduced, in the TRPV1/A1 double knockout animals this morphine effect was abrogated. Naloxone induced an increase in calcium levels similar to morphine. The responses to both morphine and naloxone were sensitized by bradykinin.

Conclusion

Nociceptor activation and sensitization by morphine is conveyed by TRPV1 and TRPA1.  相似文献   

12.
H J Haigler  D D Spring 《Life sciences》1978,23(12):1229-1239
[D-Ala2]Met-enkephalinamide (DALA) injected intracerebrally (IC) at low doses into specific sites of the mesencephalic reticular formation (MRF), produced a profound, long-lasting analgesia that was blocked by naloxone, a specific opiate antagonist. Morphine was only half as potent as DALA because morphine, injected IC at similar sites in the MRF, yielded a comparable analgesia only when injected at twice the dose. The analgesic effects of morphine were also antagonized by naloxene. Both DALA and morphine produced specific behavioral effects. Naloxone blocked the behavioral effects of DALA, but not those produced by morphine.  相似文献   

13.
E D French  S A Vasquez  R George 《Life sciences》1978,22(21):1947-1954
Morphine in doses of 1, 2, and 4 mg/kg i.v. produced dose related elevations in cat body temperature while doses of 0.25 and 0.50 mg/kg had no such effect. Tolerance was found to develop to the hyperthermic response after seven days of daily morphine injection. Pretreatment with naloxone at a dose one-fourth the dose of morphine prevented the morphine induced rise in body temperature in all cats tested. When the cats received naloxone after twelve days of daily morphine a withdrawal syndrome resulted and was accompanied by a hypothermia that was proportional to the morphine maintenance dose and severity of withdrawal.  相似文献   

14.
To analyse the interaction between endogenous opioid systems and brain reward, the influence of repeated treatment for 3 weeks with morphine and the opioid antagonist naloxone was investigated in rats with self-stimulation electrodes in the ventral tegmental area. Changes in threshold of self-stimulation determined by a response rate insensitive two lever method were considered as changes in reward. Morphine induced a temporary decrease of the response rate which lasted 3 days, and decreased the threshold for self-stimulation. The effect on threshold remained present till morphine treatment was discontinued, indicating that tolerance does not develop to this effect of morphine. Repeated naloxone treatment gradually increased the threshold for self-stimulation. This effect persisted after discontinuation of naloxone treatment. It is concluded that blockade of opioid receptors induces long term changes in the setpoint of self-stimulation reward.  相似文献   

15.
The effects of morphine on the constancy of spontaneous contractions (isometric developed tension = IDT and contractile frequency = CF), in uterine strips isolated from ovariectomized rats and the influence of naloxone, were explored. The inotropic responses to added prostaglandins (PGs) E2 and F2 alpha and the influences of morphine and of morphine in the presence of naloxone on PG actions, were also determined. Moreover, the synthesis and outputs of PGs E and F from uteri and the effects of morphine alone and of morphine plus naloxone, were studied. Morphine (10(-6) M) significantly depressed uterine constancy of IDT during the first hours following delivery, but its action on CF did not differ from controls. Naloxone, neither at 10(-8) M nor at 10(-6) M, altered the negative inotropic influence of morphine on IDT. Exogenous PGs E2 and F2 alpha, stimulated uterine inotropism in a concentration-dependent fashion. Morphine altered dose-response curves for exogenous PGE2, evoking a parallel surmountable shift to the right, but did not affect the inotropic action of added PGF2 alpha. This antagonistic effect of the opioid was not altered by preincubation with naloxone. Basal synthesis and outputs of PGs E and F in uteri from ovariectomized rats were significantly depressed by morphine (10(-6) M) but not altered by incubating tissues with morphine in presence of naloxone. Results are discussed in terms of a presumptive dual action of morphine on uterine motility, i.e., antagonizing PGE2 receptors and inhibiting the synthesis of some PGs by the uterus. These influences of morphine do not appear to be subserved by the activation of mu opioid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Prostaglandin E2 injected in the rat paw causes hyperalgesia which is antagonized by local injections of opiate and opiate antagonists. In the present investigation in rats it i shown at naloxone has an analgesic effect at doses as low as 2 μg/site, injected into the rat hind paw. At a dose that has no analgesic effect (1 μg/site) naloxone antagonized the analgesia produced by either local or systematic administration of morphine. Local administration of levorphanol (50 μg/site) caused a 50% reduction in the intensity of the hyperalgesia induced by prostaglandin E2. A dose four times greater of its isomer, dextrorphan, had little analgesic effect. The present results support the suggestion that this peripheral analgesia is the result of an action of opiates in receptors located at the nociceptors.  相似文献   

17.
陈奇  张万琴  梅懋华 《生理学报》1985,37(3):241-247
本工作用制备 Thomas 胰瘘和胃痿的5条狗进行慢性实验。实验时用0.1N 盐酸灌入十二指肠以刺激胰液分泌,并分別注射吗啡或/和纳洛酮,观察它们对胰液分泌和对胰液中碳酸氢盐和蛋白质浓度的影响。另外我们还观察了吗啡和纳洛酮对6条狗离体胰主导管紧张性的影响。结果表明:(1)吗啡抑制了胰液分泌量,对胰液中碳酸氢盐和蛋白质浓度无影响,由于分泌量减少故两者的排出量显著减少(P<0.05),(2)纳洛酮本身对胰液分泌量和碳酸氢盐及蛋白质浓度均无影响;(3)纳洛酮可以加强吗啡抑制胰液分泌的作用(P<0.01);(4)吗啡能增加狗的离体胰主导管肌条的紧张性,纳洛酮不能阻断或翻转吗啡的这一效应,相反能加强其效应。本工作表明,吗啡抑制酸化十二指肠所引起的胰碳酸氢盐和蛋白质排出量,其机制可能是吗啡刺激胰导管收缩,而纳洛酮则加强吗啡的这种抑制效应。  相似文献   

18.
M.F. Ren  C.H. Lu  J.S. Han 《Peptides》1985,6(6):1015-1020
Intrathecal injection of subanalgesic doses of morphine (7.5 nmol) and dynorphin-A-(1–13) (1.25 nmol) in combination resulted in a marked analgesic effect as assessed by tail flick latency in the rat. The analgesic effect of the composite dynorphin/morphine was dose-dependent in serial dilutions so that a composition of 1/8 of the analgesic dose of dynorphin and 1/3 that of morphine produced an analgesic effect equipotent to full dose of either drug applied separately. The analgesic effect induced by dynorphin/morphine mixture was not accompanied by motor dysfunction and was easily reversed by a small dose (0.5 mg/kg) of naloxone. Contrary to the augmentatory effect of dynorphin on morphine analgesia in the spinal cord, intracerevroventricular (ICV) injection of 20 nmol of dynorphin-A-(1–13) exhibited a marked antagonistic effect on the analgesia produced by morphine (120 nmol, ICV). The theoretical considerations and practical implications of the differential interactions between dynorphin-A-(1–13) and morphine in the brain versus spinal cord are discussed.  相似文献   

19.
Opioid overdose, which is commonly associated with opioid induced respiratory depression, is a problem with both therapeutic and illicit opioid use. While the central mechanisms involved in the effects of opioids are well described, it has also been suggested that a peripheral component may contribute to the effects observed. This study aimed to further characterise the effects of the peripherally acting naloxone methiodide on the respiratory, analgesic and withdrawal effects produced by various opioid agonists. A comparison of the respiratory and analgesic effects of morphine, methadone and heroin in male Swiss-Albino mice was conducted and respiratory depressive ED(80) doses of each opioid determined. These doses (morphine 9 mg/kg i.p., methadone 7 mg/kg i.p., and heroin 17 mg/kg i.p.) were then used to show that both naloxone (3 mg/kg i.p.) and naloxone methiodide (30-100 mg/kg i.p.) could reverse the respiratory and analgesic effects of these opioid agonists, but only naloxone precipitated withdrawal. Further investigation in female C57BL/6J mice using barometric plethysmography found that both opioid antagonists could reverse methadone induced decreases in respiratory rate and increases in tidal volume. Its effects do not appear to be strain or sex dependent. It was concluded that naloxone methiodide can reverse the respiratory and analgesic actions of a variety of opioid agonists, without inducing opioid withdrawal.  相似文献   

20.
Antagonism of morphine analgesia (tail-flick assay) by naloxone was assessed quantitatively by in vivo "apparent" pA2 determination in unstressed rats and in rats subjected to restraint stress. Restrained rats had a higher baseline tail-flick latency than did unstressed (unrestrained) animals, and were more sensitive to the analgesic effect of morphine, as reflected in lower morphine ED50s. There was no significant difference between apparent pA2 values of unstressed and restrained rats using pA2 regression line analysis. This suggests that while stress enhances the analgesic effect of morphine, it does not appreciably alter opiate receptor affinity for naloxone under the conditions of this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号