首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (HII phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the HII phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in HII phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and HII phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the HII phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

2.
In this study, we have examined the influence of different lipids on the solubility of the xanthophyll cycle pigments diadinoxanthin (Ddx) and violaxanthin (Vx) and on the efficiency of Ddx and Vx de-epoxidation by the enzymes Vx de-epoxidase (VDE) from wheat and Ddx de-epoxidase (DDE) from the diatom Cyclotella meneghiniana, respectively. Our results show that the lipids MGDG and PE are able to solubilize both xanthophyll cycle pigments in an aqueous medium. Substrate solubilization is essential for de-epoxidase activity, because in the absence of MGDG or PE Ddx and Vx are present in an aggregated form, with limited accessibility for DDE and VDE. Our results also show that the hexagonal structure-forming lipids MGDG and PE are able to solubilize Ddx and Vx at much lower lipid concentrations than bilayer-forming lipids DGDG and PC. We furthermore found that, in the presence of MGDG or PE, Ddx is much more solubilizable than Vx. This substantial difference in Ddx and Vx solubility directly affects the respective de-epoxidation reactions. Ddx de-epoxidation by the diatom DDE is saturated at much lower MGDG or PE concentrations than Vx de-epoxidation by the higher-plant VDE. Another important result of our study is that bilayer-forming lipids DGDG and PC are not able to induce efficient xanthophyll de-epoxidation. Even in the presence of high concentrations of DGDG or PC, where Ddx and Vx are completely solubilized, a strongly inhibited Ddx de-epoxidation is observed, while Vx de-epoxidation by VDE is completely absent. This indicates that the inverted hexagonal phase domains provided by lipid MGDG or PE are essential for de-epoxidase activity. We conclude that in the natural thylakoid membrane MGDG serves to solubilize the xanthophyll cycle pigments and furthermore provides inverted hexagonal structures associated with the membrane bilayer, which are essential for efficient xanthophyll de-epoxidase activity.  相似文献   

3.
The present study shows that thylakoid membranes of the diatom Cyclotella meneghiniana contain much higher amounts of negatively charged lipids than higher plant or green algal thylakoids. Based on these findings, we examined the influence of SQDG on the de-epoxidation reaction of the diadinoxanthin cycle and compared it with results from the second negatively charged thylakoid lipid PG. SQDG and PG exhibited a lower capacity for the solubilization of the hydrophobic xanthophyll cycle pigment diadinoxanthin than the main membrane lipid MGDG. Although complete pigment solubilization took place at higher concentrations of the negatively charged lipids, SQDG and PG strongly suppressed the de-epoxidation of diadinoxanthin in artificial membrane systems. In in vitro assays employing the isolated diadinoxanthin cycle enzyme diadinoxanthin de-epoxidase, no or only a very weak de-epoxidation reaction was observed in the presence of SQDG or PG, respectively. In binary mixtures of the inverted hexagonal phase forming lipid MGDG with the negatively charged bilayer lipids, comparable suppression took place. This is in contrast to binary mixtures of MGDG with the neutral bilayer lipids DGDG and PC, where rapid and efficient de-epoxidation was observed. In complex lipid mixtures resembling the lipid composition of the native diatom thylakoid membrane, we again found strong suppression of diadinoxanthin de-epoxidation due to the presence of SQDG or PG. We conclude that, in the native thylakoids of diatoms, a strict separation of the MGDG and SQDG domains must occur; otherwise, the rapid diadinoxanthin de-epoxidation observed in intact cells upon illumination would not be possible.  相似文献   

4.
Yamamoto HY 《Planta》2006,224(3):719-724
Monogalactosyldiacylglyceride (MGDG) and digalactosyldiacylglyceride (DGDG) are the major membrane lipids of chloroplasts. The question of the specialized functions of these unique lipids has received limited attention. One function is to support violaxanthin de-epoxidase (VDE) activity, an enzyme of the violaxanthin cycle. To understand better the properties of this system, the effects of galactolipids and phosphatidylcholines on VDE activity were examined by two independent methods. The results show that the micelle-forming lipid (MGDG) and bilayer forming lipids (DGDG and phosphatidylcholines) support VDE activity differently. MGDG supported rapid and complete de-epoxidation starting at a threshold lipid concentration (10 μM) coincident with complete solubilization of violaxanthin. In contrast, DGDG supported slow but nevertheless complete to nearly complete de-epoxidation at a lower lipid concentration (6.7 μM) that did not completely solubilize violaxanthin. Phosphotidylcholines showed similar effects as DGDG except that de-epoxidation was incomplete. Since VDE requires solubilized violaxanthin, aggregated violaxanthin in DGDG at low concentration must become solubilized as de-epoxidation proceeds. High lipid concentrations had lower activity possibly due to formation of multilayered structures (liposomes) that restrict accessibility of violaxanthin to VDE. MGDG micelles do not present such restrictions. The results indicate VDE operates throughout the lipid phase of the single bilayer thylakoid membrane and is not limited to putative MGDG micelle domains. Additionally, the results also explain the differential partitioning of violaxanthin between the envelope and thylakoid as due to the relative solubilities of violaxanthin and zeaxanthin in MGDG, DGDG and phospholipids. The violaxanthin cycle is hypothesized to be a linked system of the thylakoid and envelope for signal transduction of light stress.  相似文献   

5.
The xanthophyll cycle is a photoprotective mechanism operating in the thylakoid membranes of all higher plants, ferns, mosses and several algal groups. The occurrence of inverted hexagonal domains of monogalactosyldiacylglycerol (MGDG) in the membrane is postulated as an essential factor involved in violaxanthin de-epoxidation. The violaxanthin de-epoxidation was investigated in high-light illuminated Lemna trisulca at three temperatures (4, 12, and 25°C). The temperature dependence of this reaction was compared with kinetics of violaxanthin de-epoxidation at the same temperatures in MGDG micelles and in phosphatidylcholine (PC)–MGDG unilamellar liposomes. In both model systems and in the illuminated plants, a decrease in temperature resulted in lower zeaxanthin production. We found that the presence of MGDG in PC liposomes was necessary for the de-epoxidation reaction. With the increase in MGDG proportion in liposomes, the percentage of transformed violaxanthin was also increasing. We suggest that the violaxanthin de-epoxidation takes place within lipid matrix of the thylakoid membranes inside the MGDG-rich domains. Presence of the reversed hexagonal phase in the thylakoid membranes has been already reported in our previous papers and by other authors using 31P-NMR and freeze-fracturing techniques.  相似文献   

6.
7.
8.
Mock T  Kroon BM 《Phytochemistry》2002,61(1):53-60
Low photosynthetic active radiation is a strong determinant in the development and growth of sea ice algae. The algae appear to have universal mechanisms to overcome light limitation. One important process, which is induced under light limitation, is the desaturation of chloroplast membrane lipids. In order to discover whether this process is universally valid in sea ice diatoms, we investigated three species coexisting in chemostats illuminated with 15 and 2 micromol photons m(-2) s(-1) at -1 degrees C. Growth under 2 micromol photons m(-2) s(-1) caused a 50% increase in monogalactosyldiacylglycerols (MGDG) thylakoid membrane related 20:5 n-3 fatty acids. This fatty acid supports the fluidity of the thylakoid membrane and therefore the velocity of electron flow, which is indicated by increasing rate constants for the electron transport between Q(A) (first stable electron acceptor) and bound Q(B) (second stable electron acceptor) (11.16 +/- 1.34 to 23.24 +/- 1.35 relative units). Two micromol photons m(-2) s(-1) furthermore resulted in higher amounts of non-lipid bilayer forming MGDG in relation to other bilayer forming lipids, especially digalactosydiacylglycerol (DGDG). The ratio of MGDG:DGDG increased from 3.4 +/- 0.3 to 5.7 +/- 0.3. The existence of bilayer thylakoid membranes with high proportions of non. bilayer forming lipids is only possible when sufficient thylakoid pigment-protein complexes are present. If more thylakoid pigment-protein complexes are present in membranes, as found under extreme light limitation, less bilayer forming lipids such as DGDG are required to stabilize the bilayer structure. Differences in protein contents between both light intensities were not found. Consequently pigment contents which nearly doubled under 2 micromol photons m(-2) s(-1) must be responsible in balancing the potential stability loss resulting from an increase in MGDG:DGDG ratio.  相似文献   

9.
Photosynthetic membranes of higher plant chloroplasts are composed primarily of polar, but uncharged, galactolipids unlike most mammalian membranes which contain large amounts of phosphatidylcholine. It is unclear what role(s) the galactolipids play in maintaining the differentiated thylakoid membranes, or in stabilizing the photosynthetically active enzyme complexes. Some of the membrane complexes show no lipid selectivity for maintaining structural or functional integrity. Others are poisoned or dissociated in the presence of high concentrations of a trace lipid class. The efficiency of energy transfer and the reconstitution of protein complexes into liposomes are dependent on the lipid class employed. The lipids are asymmetrically arranged along and across the thylakoid membranes but not as distinctly as the proteins.Abbreviations DGDG digalactosyldiglyceride - MGDG monogalactosyldiglyceride - SQDG sulfoquinovosyldiglyceride - PG phosphatidylglycerol - PC phosphatidylcholine - PE phosphatidylethanolamine - PSI photosystem I - PSII photosystem II - LHC chlorophylla/b lightharvesting complex - cytb 6 f cytochromeb 6 f complex - CF0/CF1 coupling factor ATPase - DCIP 2,6-dichlorophenolindophenol - LRa galactolipase fromRhizopus arrhis  相似文献   

10.
J W Jensen  J S Schutzbach 《Biochemistry》1988,27(17):6315-6320
Rat liver dolichyl-phosphomannose synthase (GDP mannose-dolicholphosphate mannosyltransferase; EC 2.4.1.83) was previously shown to catalyze optimal rates of mannosyl transfer to dolichyl-P when the polyprenol acceptor was incorporated into a phosphatidylethanolamine (PE) matrix that has a tendency to adopt a nonbilayer (hexagonal HII) phase [Jensen, J. W., & Schutzbach, J. S. (1985) Eur. J. Biochem. 153, 41-48]. The present investigations now further define the properties of the lipid environment that are essential for mannosyltransferase activity. Monogalactosyl diglyceride (MGDG), a glycoglycerolipid that prefers a nonbilayer-phase organization in isolation, was shown to provide a suitable lipid matrix for synthase activity. By comparison, the enzyme was not activated by digalactosyl diglyceride (DGDG), which forms stable bilayer structures upon hydration. Enzyme activity in MGDG/DGDG mixtures decreased as the proportion of DGDG in the dispersion was increased. Although bilayer-forming phospholipids supported low rates of mannosyl transfer, enzyme activity was stimulated by the addition of MGDG to either phosphatidylcholine (PC) or PE/PC (1:1) membranes. The incorporation of agents known to destabilize bilayer structures including dolichols, ubiquinone, dodecane, and cholesterol into PE/PC (1:1) membranes also increased the rate of mannosyl transfer. Enzyme activity in PC membranes was stimulated by the presence of gramicidin and also by greatly increased concentrations of the substrate, dolichyl-P. The results demonstrate that the enzyme does not have a requirement for PE and suggest that the physical state of the lipid matrix is an important determinant for reconstitution of the synthase and polyprenol phosphate substrate in a productive complex. The formation of an enzyme/lipid complex was demonstrated by sucrose density gradient centrifugation and could be correlated with the lipid requirements for enzyme activity.  相似文献   

11.
利用从菠菜(Spinacia oleracea L.)叶绿体分离、纯化出的缺失膜脂的细胞色素b6f蛋白复合体(Cyt b6f)制剂与从菠菜类囊体分离、纯化的膜脂进行体外重组,检测了不同膜脂对Cyt b6f催化电子传递活性的影响.结果表明:被检测的5种膜脂,即单半乳糖基甘油二酯(MGDG)、双半乳糖基甘油二酯(DGDG)、磷脂酰胆碱(PC)、磷脂酰甘油(PG)和硫代异鼠李糖基甘油二酯(SQDG)对Cyt b6f催化电子传递的活性均有明显的促进作用,但促进的程度各不相同,这可能与这些膜脂分子的带电性质密切相关.不带电荷的MGDG和DGDG及分子整体呈电中性的PC对促进Cyt b6f催化电子传递的活性非常有效,可分别使其活性提高89%、75%和77%;而带负电荷的PG和SQDG对活性的促进作用则相对较弱,仅可使其活性分别提高43%和26%.  相似文献   

12.
This paper describes violaxanthin de-epoxidation in model lipid bilayers. Unilamellar egg yolk phosphatidylcholine (PtdCho) vesicles supplemented with monogalactosyldiacylglycerol were found to be a suitable system for studying this reaction. Such a system resembles more the native thylakoid membrane and offers better possibilities for studying kinetics and factors controlling de-epoxidation of violaxanthin than a system composed only ofmonogalactosyldiacylglycerol and is commonly used in xanthophyll cycle studies. The activity of violaxanthin de-epoxidase (VDE) strongly depended on the ratio of monogalactosyldiacylglycerol to PtdCho in liposomes. The mathematical model of violaxanthin de-epoxidation was applied to calculate the probability of violaxanthin to zeaxanthin conversion at different phases of de-epoxidation reactions. Measurements of deepoxidation rate and EPR-spin label study at different temperatures revealed that dynamic properties of the membrane are important factors that might control conversion of violaxanthin to antheraxanthin. A model of the molecular mechanism of violaxanthin de-epoxidation where the reversed hexagonal structures (mainly created by monogalactosyldiacylglycerol) are assumed to be required for violaxanthin conversion to zeaxanthin is proposed. The presence of monogalactosyldiacylglycerol reversed hexagonal phase was detected in the PtdCho/monogalactosyldiacylglycerol liposomes membrane by 31P-NMR studies. The availability of violaxanthin for de-epoxidation is a diffusion-dependent process controlled by membrane fluidity. The significance of the presented results for understanding themechanism of violaxanthin de-epoxidation in native thylakoid membranes is discussed.  相似文献   

13.
The major light-harvesting chlorophyll a/b complex (LHCIIb) of photosystem (PS) II functions by harvesting light energy and by limiting and balancing the energy flow directed towards the PSI and PSII reaction centers. The complex is predominantly trimeric; however, the monomeric form may play a role in one or several of the regulatory functions of LHCIIb. In this work the dissociation temperature was measured of trimeric LHCIIb isolated from Pisum thylakoids and inserted into liposomes made of various combinations of thylakoid lipids at various protein densities. Dissociation was measured by monitoring a trimer-specific circular dichroism signal in the visible range. The LHCIIb density in the membrane significantly affected the trimer dissociation temperature ranging from 70 degrees C at an LHCIIb concentration comparable to or higher than the one in thylakoid grana, to 65 degrees C at the density estimated in stromal lamellae. Omitting one thylakoid lipid from the liposomes had virtually no effect on the thermal trimer stability in most cases except when digalactosyl diacylglycerol (DGDG) was omitted which caused a drop in the apparent dissociation temperature by 2 degrees C. In liposomes containing only one lipid species, DGDG and, even more so, monogalactosyl diacylglycerol (MGDG) increased the thermal stability of LHCIIb trimers whereas phosphatidyl diacylglycerol (PG) significantly decreased it. The lateral pressure exerted by the non-bilayer lipid MGDG did not significantly influence LHCII trimer stability.  相似文献   

14.
Using liposomes composed of either brain phosphatidylcholine (PC), or binary mixtures of PC and phosphatidylserine (PS), galactolipids (GL), phosphatidylinositol (PI), cardiolipin (CL), phosphatidic acid (PA), or phosphatidylethanolamine (PE), we investigated the effects of graded amounts of boric acid (B, 0.5-1000 microM) on the following membrane physical properties: (a) surface potential, (b) lipid rearrangement through lateral phase separation, (c) fluidity, and (d) hydration. Incubation of the different populations of vesicles with B was associated with a small, but statistically significant, increase in membrane surface potential in PC, PC:PS, PC:GL, PC:PI, PC:PA, and PC:PE liposomes. B-induced lipid lateral rearrangement through lateral phase separation in PC, PC:PA, and PC:PE liposomes; but had no effects on PC:PS, PC:GL, and PC:PI liposomes. In PC liposomes B affected membrane fluidity at the water-lipid interface without affecting the hydrophobic core of the bilayer. In all the other binary liposomes studied, B increased membrane fluidity in both, the hydrophobic portion of the membrane and in the anionic domains. The above was associated with a decrease in the fluidity of the cationic domains. B (10-1000 microM) decreased membrane hydration regardless the composition of the liposomes. The obtained results demonstrate the ability of B to interact with membranes, and induce changes in membrane physical properties. Importantly, the extent of B-membrane interactions and the consequent effects were dependent on the nature of the lipid molecule; as such, B had greater affinity with lipids containing polyhydroxylated moieties such as GL and PI. These differential interactions may result in different B-induced modulations of membrane-associated processes in cells.  相似文献   

15.
B Fuks  F Homblé 《Biophysical journal》1994,66(5):1404-1414
Electrical measurements were carried out on planar lipid membranes from thylakoid lipids. The specific capacitance of membranes formed from decane-containing monogalactosyldiacylglycerol (MGDG), which accounts for 57% of the total lipid content of thylakoids, showed that it adopted a bilayer structure. Solvent-free bilayers of MGDG were not formed, with very rare exceptions, indicating that decane is required to stabilize the planar conformation. However, this cone-shaped lipid produces bilayer structures in combination with other cylindrical thylakoid lipids even in the absence of organic solvent. We compared the properties of solvent-free and decane-containing bilayers from MGDG, soybean lecithin, and the quaternary mixture of lipids similar to that found in vivo. The conductance of decane-MGDG was 26 times higher than that of decane-lecithin. The flux through the decane-lecithin bilayer was found to be slightly dependent on pH, whereas the decane-MGDG membrane was not. The specific conductance of bilayers formed from the quaternary mixture of lipids was 5 to 10 times larger than lecithin (with alkane or not). Further experiments with bilayers made in the presence of a KCl gradient showed that decane-MGDG, decane-MGDG/DGDG/SQDG/PG, and solvent-free MGDG/DGDG/SQDG/PG were cation-selective. The permeability coefficient for potassium ranged from 4.9 to 8.3 x 10(-11) cm s-1. The permeability coefficient for protons in galactolipids, however, was determined to be about six orders of magnitude higher than the value for potassium ions. The HCl permeation mechanism through the lipid membranes was determined from diffusion potentials measured in HCl gradients. Our results suggest that HCl was not transported as neutral molecules. The data is discussed with regard to the function of galactolipids in the ion transport through thylakoid membranes.  相似文献   

16.
In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx.  相似文献   

17.
We have systematically investigated the effect of variations in growth temperature, fatty acid composition and cholesterol content on the membrane lipid polar headgroup composition of Acholeplasma laidlawii B. Two important lipid compositional parameters have been determined from such an analysis. The first parameter studied was the ratio of the two major neutral glycolipids of this organism, monoglucosyldiacylglycerol (MGDG) and diglucosyldiacylglycerol (DGDG). As the former lipid prefers to exist in a reversed hexagonal phase at higher temperatures, with unsaturated fatty acyl chains or in the presence of cholesterol, the ratio of these two lipids reflects the phase state preference of the total A. laidlawii membrane lipids. Although we find that the MGDG/DGDG ratio is reduced in response to an increase in fatty acid unsaturation, increases in growth temperature or cholesterol content reduce this ratio only in cells enriched in a saturated but not an unsaturated fatty acid. The second parameter studied was the ratio of these neutral glycolipids to the only phosphatide in the A. laidlawii membrane, phosphatidylglycerol (PG); this parameter reflects the relative balance of uncharged and charged lipids in the membrane of this organism. We find that the MGDG + DGDG/PG ratio is lowest in cells enriched in the saturated fatty acid even though these cells already have the highest lipid bilayer surface charge density. Moreover, this ratio is not consistently related to growth temperature or changes in cholesterol levels, as expected. We therefore conclude that A. laidlawii strain B, apparently unlike strain A, does not possess coherent regulatory mechanisms for maintaining either the phase preference or the surface charge density of its membrane lipid constant in response to variations in growth temperature, fatty acid composition or cholesterol content.  相似文献   

18.
The major light-harvesting chlorophyll a/b complex (LHCIIb) of photosystem (PS) II functions by harvesting light energy and by limiting and balancing the energy flow directed towards the PSI and PSII reaction centers. The complex is predominantly trimeric; however, the monomeric form may play a role in one or several of the regulatory functions of LHCIIb. In this work the dissociation temperature was measured of trimeric LHCIIb isolated from Pisum thylakoids and inserted into liposomes made of various combinations of thylakoid lipids at various protein densities. Dissociation was measured by monitoring a trimer-specific circular dichroism signal in the visible range. The LHCIIb density in the membrane significantly affected the trimer dissociation temperature ranging from 70 °C at an LHCIIb concentration comparable to or higher than the one in thylakoid grana, to 65 °C at the density estimated in stromal lamellae. Omitting one thylakoid lipid from the liposomes had virtually no effect on the thermal trimer stability in most cases except when digalactosyl diacylglycerol (DGDG) was omitted which caused a drop in the apparent dissociation temperature by 2 °C. In liposomes containing only one lipid species, DGDG and, even more so, monogalactosyl diacylglycerol (MGDG) increased the thermal stability of LHCIIb trimers whereas phosphatidyl diacylglycerol (PG) significantly decreased it. The lateral pressure exerted by the non-bilayer lipid MGDG did not significantly influence LHCII trimer stability.  相似文献   

19.
In this study we present evidence that one of two reactions of the xanthophyll cycle, violaxanthin de-epoxidation, may occur in unilamellar egg phosphatidylcholine vesicles supplemented with monogalactosyldiacylglycerol (MGDG). Activity of violaxanthin de-epoxidase (VDE) in this system was found to be strongly dependent on the content of MGDG in the membrane; however, only to a level of 30 mol%. Above this concentration the rate of violaxanthin de-epoxidation decreased. The effect of individual thylakoid lipids on VDE-independent violaxanthin transformation was also investigated and unspecific effects of phosphatidylglycerol and sulphoquinovosyldiacyglycerol, probably related to the acidic character of these lipids, were found. The presented results suggest that violaxanthin de-epoxidation most probably takes place inside MGDG-rich domains of the thylakoid membrane. The described activity of the violaxanthin de-epoxidation reaction in liposomes opens new possibilities in the investigation of the xanthophyll cycle and may contribute to a better understanding of this process.  相似文献   

20.
The plasma membrane from Aphanothece halophytica was isolated using both glycerol and sucrose gradient centrifugation. The isolated membrane was characterized for lipid content by TLC and isolated lipids were quantified by chemical analysis. The plasma membrane of A. halophytica was composed of MGDG, DGDG and PG. The sulfur containing lipid SQDG was not detected. The mole percent of each lipid in the plasma membrane varied with the external salinity of the media. MGDG was the most abundant lipid in the plasma membrane of cells grown at one molar external NaCl. At three molar external NaCl, PG was the most abundant lipid. The ratio of uncharged to charged lipids comprising the plasma membrane decreased as the external salinity increased. It is possible that the alteration in lipid composition is of major importance in the adaptation of A. halophytica to changing external salinity.Abbreviations TLC Thin-layer chromatography - MGDG momogalactosyldiacylglycerol - DGDG digaloctosyldiacylglycerol - PG phosphatidylglycerol - SQDG sulphoquinovosyldiacylglycerol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号