首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to characterize the microstructure of chitosan and alginate edible films by microscopy techniques and texture image analysis. Edible films were obtained by solution casting and solvent evaporation. The microscopy techniques used in this work were: light, environmental scanning electron and atomic force microscopy. Textural features and fractal dimension were extracted from the images. Entropy and fractal dimension were more useful to evaluate the complexity and roughness of films. The highest values of entropy and fractal dimension corresponded to alginate/chitosan, followed of alginate and chitosan films. An entropy/fractal dimension ratio, proposed here, was useful to characterize the degree of image complexity and roughness of edible films at different magnifications. It was possible to postulate that microscopy techniques combined with texture image analysis are efficient tools to quantitatively evaluate the surface morphology of edible films made of chitosan and alginate.  相似文献   

2.
High-resolution image analysis has the potential to flag subtle changes in white blood cell morphology that may indicate the presence of certain diseases. A study was made of the feasibility of identifying patients with hematologic bacterial infections (sepsis) using measurements on Wright-Giemsa-stained peripheral blood smears. Neutrophils and lymphocytes from a group of patients with sepsis and from a control group were digitized, and parameters quantifying geometry, color, texture and shape were extracted. While color parameters differed the most between the infected and control samples, substantial differences in geometric, texture and shape parameters also were observed. Analysis of the data showed that individual neutrophils and lymphocytes from patients with sepsis were distinguishable from those of the control group with better than 84% accuracy. When average parameters were calculated from all cells of one type for each specimen, 100% accurate classification was obtained. These studies demonstrate that the image-analysis techniques used are sensitive enough to detect disease-related changes in cell morphology that are generally too subtle for reliable detection by the human eye. Future experiments will determine the specificity of this test for bacterial infections and will explore the possibility of using image analysis techniques on peripheral blood to detect and monitor a wide variety of diseases.  相似文献   

3.
4.
Bioprocesses that employ mycelial microorganisms are commercially important. The application of optical techniques for the measurement of biomass in such processes is limited by the morphological heterogeneity exhibited by the mycelial microorganism employed. We investigated the influence of morphology on the near-infrared (NIR) spectra of the biomass of Streptomyces fradiae, a filamentous microorganism, by studying the spectra of mycelial suspensions that were manipulated to generate a range of morphological forms. Computerized image analysis was used to characterize the morphological forms. Principal component analysis was used to assess the spectral variations and study correlations to the manipulated mycelial morphology. Although morphology was found to influence the near infrared transmittance spectra of biomass, the influence was less pronounced than in the visible region, the spectral information at longer wavelengths (1600-2350 nm) showing greater stability to morphological variations. Long-wave NIR spectral information is therefore likely to be more useful in estimating biomass in mycelial bioprocesses. Furthermore, the NIR reflectance spectra of dried biomass were found to show correlations to the morphological variations introduced, suggesting that NIR spectra may be useful in obtaining morphology related information.  相似文献   

5.
Morphology is important in industrial processes involving filamentous organisms because it affects the mixing and mass transfer and can be linked to productivity. Image analysis provides detailed information about the morphology but, in practice, it is often laborious including both collection of high quality images and image processing. Laser diffraction is rapid and fully automatic and provides a volume-weighted distribution of the particle sizes. However, it is based on a number of assumptions that do not always apply to samples. We have evaluated laser diffraction to measure cell clumps and pellets of Streptomyces coelicolor compare to image analysis. Samples, taken five times during fed-batch cultivation, were analyzed by image analysis and laser diffraction. The volume-weighted size distribution was calculated for each sample. Laser diffraction and image analysis yielded similar size distributions, i.e. unimodal or bimodal distributions. Both techniques produced similar estimations of the population means, whereas the estimates of the standard deviations were generally higher using laser diffraction compared to image analysis. Therefore, laser diffraction measurements are high quality and the technique may be useful when rapid measurements of filamentous cell clumps and pellets are required.  相似文献   

6.
Forty-four Trichoderma strains from water-damaged building materials or indoor dust were classified with chromatographic image analysis on full chromatographic matrices obtained by high performance liquid chromatography with UV detection of culture extracts. The classes were compared with morphological identification and rDNA sequence data, and for each class all strains were of the same identity. With all three techniques each strain--except one--was identified as the same species. These strains belonged to Trichoderma atroviride (nine strains), Trichoderma viride (three strains), Trichoderma harzianum (10 strains), Trichoderma citrinoviride (12 strains), and Trichoderma longibrachiatum (nine strains). The odd strain was identified as Trichoderma hamatum by morphology and rDNA sequencing, but not by image analysis as no reference strains of this species were included. It is concluded that the secondary metabolite profile contains sufficient information for classification and species identification.  相似文献   

7.
We developed immunohistochemical and image analytical techniques to localize and quantify keratins and desmoplakins in sections of plastic-embedded human gingiva. Acetone fixation followed by plastic embedding of gingiva provided excellent morphology and permitted immunohistochemical detection of keratins 1 and 19 and desmoplakins I & II after 2.5-min trypsin digestion. Quantitative image analysis demonstrated that different volume densities of staining of each marker were associated with specific epithelial strata. Keratin 1 stained most heavily in granular strata, followed by corneal and spinous strata; keratin 19 stained most strongly in the basal layer; desmoplakins I & II stained most strongly in the granular and corneal strata. These findings confirm that variations of keratin and desmoplakin expression in these epithelial are associated with regional patterns of epithelial differentiation.  相似文献   

8.
Observation of three-dimensional (3D) morphology changes of a single mammalian cell is very useful to understand cell response for various stimuli. Conventional techniques to evaluate morphology changes with sufficient precision and high temporal resolution are limited. For example, the confocal fluorescence microscope is available to take 3D morphology changes, whereas fluorescence microscopic observation requires labeling the cells with fluorescence dye. Recently, a novel imaging method based on digital holography was developed for nonlabeling microscopic observation of 3D morphology. Digital holographic microscopy has high potentiality in digital focusing properties, video-frequency capability, noninvasive operation, and so forth. It obtains a quantitative phase image of a living cell from a single recorded hologram, with interferometric accuracy, and surveys the rapid morphology change of a single cell. In this study, digital holographic microscopy was applied to monitor the 3D morphology change of an individual PC12 cell, a nerve model cell, subjected to high K(+) stimulation. Phase images of the rapidly swelling cell were acquired, and time lapse reconstruction of 3D cell morphology was performed from phase images. Our results demonstrate that digital holographic imaging is a powerful new tool for evaluation of cell response against various stimulants without any labeling reagent.  相似文献   

9.
The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processing techniques such as local thresholding and nearest neighbor identification, RootAnalyzer segments the plant root from the image’s background, classifies and characterizes the cortex, stele, endodermis and epidermis, and subsequently produces statistics about the morphological properties of the root cells and tissues. We use RootAnalyzer to analyze 15 images of wheat plants and one maize plant image and evaluate its performance against manually-obtained ground truth data. The comparison shows that RootAnalyzer can fully characterize most root tissue regions with over 90% accuracy.  相似文献   

10.
In this work, we describe a methodology to fabricate transparent elastomeric vascular replicas using rapid prototyping techniques. First, the three-dimensional morphology of an elastase-induced aneurysm model in rabbit is acquired. The morphology is reconstructed from in vivo rotational angiography and it is compared with three-dimensional reconstructions obtained by computerized tomography and magnetic resonance imaging of an intraluminal arterial cast that was obtained from the same animal at sacrifice. Results show that resolution of the imaging modality strongly influences the level of detail, such as small side branches, in the final reconstruction. We developed an average morphology model for elastase-induced aneurysms in rabbits including the surrounding vasculature and describe a method for rapid prototyping of vascular models from the three-dimensional morphology. Our replicas can be manufactured in a short period of time and the final product is optically clear. In addition, the elasticity of the models can be controlled to represent arterial elasticity, which makes them ideal for optical investigations of detailed flow dynamics using measurement tools such as particle image velocimetry.  相似文献   

11.
In this study we have investigated the morphology and electrical characteristics of protein layers non-covalently adsorbed onto an irregular network of carbon nanotubes (CNT). The layer system presents a prototype for an ion-sensitive field-effect transistor based on CNT-networks. The complementary characterization techniques AFM and ellipsometry give the overall morphology of the functionalized layer system and in combination with concentration dependent measurements a detailed image of the adsorption dynamics. The advantage of CNT-based FETs is their huge surface area, which makes them extremely sensitive even to weak adsorption processes. The here-presented comparative investigations clearly show that significant changes in the transport properties of the CNTs occur much below one monolayer. This sensitivity is an important condition for the future development of efficient biodevices with optimal performance parameters for the detection of pathogenic microorganisms.  相似文献   

12.
Frost NA  Lu HE  Blanpied TA 《PloS one》2012,7(5):e36751
In neurons, the shape of dendritic spines relates to synapse function, which is rapidly altered during experience-dependent neural plasticity. The small size of spines makes detailed measurement of their morphology in living cells best suited to super-resolution imaging techniques. The distribution of molecular positions mapped via live-cell Photoactivated Localization Microscopy (PALM) is a powerful approach, but molecular motion complicates this analysis and can degrade overall resolution of the morphological reconstruction. Nevertheless, the motion is of additional interest because tracking single molecules provides diffusion coefficients, bound fraction, and other key functional parameters. We used Monte Carlo simulations to examine features of single-molecule tracking of practical utility for the simultaneous determination of cell morphology. We find that the accuracy of determining both distance and angle of motion depend heavily on the precision with which molecules are localized. Strikingly, diffusion within a bounded region resulted in an inward bias of localizations away from the edges, inaccurately reflecting the region structure. This inward bias additionally resulted in a counterintuitive reduction of measured diffusion coefficient for fast-moving molecules; this effect was accentuated by the long camera exposures typically used in single-molecule tracking. Thus, accurate determination of cell morphology from rapidly moving molecules requires the use of short integration times within each image to minimize artifacts caused by motion during image acquisition. Sequential imaging of neuronal processes using excitation pulses of either 2 ms or 10 ms within imaging frames confirmed this: processes appeared erroneously thinner when imaged using the longer excitation pulse. Using this pulsed excitation approach, we show that PALM can be used to image spine and spine neck morphology in living neurons. These results clarify a number of issues involved in interpretation of single-molecule data in living cells and provide a method to minimize artifacts in single-molecule experiments.  相似文献   

13.
Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes.  相似文献   

14.
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade‐offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions.  相似文献   

15.
AIMS: Effects of amino acid on morphological development and nucleus formation of arachidonic acid-producing filamentous micro-organism, Mortierella alpina were investigated using flow-through chamber. METHODS AND RESULTS: Mortierella alpina CBS 754.68 was cultivated in flow through chamber using nutrient-rich, minimal and specific amino acid-containing minimal media. To investigate the effect of amino acid on morphological parameters either 0.28 g l(-1) alanine, 0.53 g l(-1) sodium glutamate one hydrate or 0.42 g l(-1) valine was added to the minimal medium. In a flow-through chamber, the growth of hyphal elements and nucleus formation of arachidonic acid-producing fungus M. alpina were studied on-line, using image analysis techniques. When the Ala- and Val-containing media were used, the hyphal growth units (HGUs) were 90.2 and 86.7 microm per tip, respectively, which were 2.4-fold higher than that in the nutrient-rich medium, indicating that Ala and Val stimulate the elongation of hyphae. The specific nucleus formation rates were Glu->Val-containing media>minimal and nutrient-rich media>Ala-containing medium. The nucleus doubling times in Glu- and Val-containing media were 1.9 and 2 h, respectively, which were not significant different. CONCLUSIONS: Ala and Val stimulate the elongation of M. alpina hyphae, and nucleus formation rates were Glu->Val->Ala-containing media. SIGNIFICANCE AND IMPACT OF THE STUDY: Formation of fungal morphology and nucleus were shown using the flow-through chamber coupled with image analysis, which making possible to discuss the relationship between mycelial morphology and nucleus formation of M. alpina.  相似文献   

16.
If the visual image and quantitative treatment of a form could be merged, the combination could become a powerful analytical method in morphology. A method is presented for creating an averaged outline. In this method, since the averaged outline is produced statistically, hypothesis testing can be performed on the visual image of the outlines. Intra- and intergroup variation of the outlines can then be assessed by taking allometry into account. This method is applied to the analysis of sexual differences in the midsagittal outline of recent (1880s-1920s) Japanese crania. The averaged outlines of both sexes showed subtle features that could not be detected by traditional measuring techniques. Because the roundness, flatness, or protrusion of specific aspects of the morphology are clearly apparent, sexual differences in this sample could be identified. Changes resulting from allometry did not seem to be present in either sex. The shape distance (DIR) introduced here matched well the visual impression derived from comparisons of the Japanese sample with a Jomon (Neolithic) male and the Broken Hill specimen.  相似文献   

17.
Bird predation is one of the major concerns for fish culture in open ponds. A novel method for dispersing birds is the use of autonomous vehicles. Image recognition software can improve their efficiency. Several image processing techniques for recognition of birds have been tested. A series of morphological operations were implemented. We divided images into 3 types, Type 1, Type 2, and Type 3, based on the level of difficulty of recognizing birds. Type 1 images were clear; Type 2 images were medium clear, and Type 3 images were unclear. Local thresholding has been implemented using HSV (Hue, Saturation, and Value), GRAY, and RGB (Red, Green, and Blue) color models on all three sections of images and results were tabulated. Template matching using normal correlation and artificial neural networks (ANN) are the other methods that have been developed in this study in addition to image morphology. Template matching produced satisfactory results irrespective of the difficulty level of images, but artificial neural networks produced accuracies of 100, 60, and 50% on Type 1, Type 2, and Type 3 images, respectively. Correct classification rate can be increased by further training. Future research will focus on testing the recognition algorithms in natural or aquacultural settings on autonomous boats. Applications of such techniques to industrial, agricultural, or related areas are additional future possibilities.  相似文献   

18.
This report describes the results of applying the computer-assisted image analysis system for the measurement of some cytological parameters of LPS-stimulated and nonstimulated human monocytes. The experiments were carried out by means of the digital cell image analysis of haematoxilyn stained monocytes. Five different parameters describing the morphology of monocytes and their nuclei were selected to quantitate the differences between control and activated cells area, perimeter, elongation, dispersion, and extension of images of cell projections. The results suggest that all of the analysed parameters can be used to discriminate stimulated from nonstimulated monocytes which permits detailed monitoring of the changes in cell morphology during monocyte activation.  相似文献   

19.
Sperm were obtained via electroejaculation from Domestic ferret, (Mustela putorius furo), Siberian ferret (M. eversmanni), Black-footed ferret (M. nigripes), and a hybrid between Siberian and Domestic, called the Fitch ferret (M. sp.). Comparisons of sperm were made by four different microscopy techniques to determine whether differences exist among species. First, Nomarski differential interference microscopy could be used to distinguish domestic ferret sperm from the others on the basis of the structure of the posterior part of the acrosome. Second, both silver staining, which demonstrates argentophilic protein distribution, and scanning electron microscopy (SEM), revealed differences among the morphology of sperm for each species; variation in the unique appearance of the acrosome in ferret sperm was detected especially well by SEM. To quantify differences in morphology, five sperm head parameters were measured using image analysis; light microscopy produced significantly larger values than did SEM (all parameters and all species but Fitch), and there were significant differences owing to species for all parameters but one. Generally, our data demonstrate the value of complementary techniques to distinguish among sperm of closely related species and more specifically may help establish evolutionary relationships among the ferret species studied. In addition, they provide baseline data important for the captive breeding of the endangered Black-footed ferret.  相似文献   

20.
Aura and Sindbis viruses are closely related alphaviruses. Unlike other alphaviruses, Aura virus efficiently encapsidates both genomic RNA (11.8 kb) and subgenomic RNA (4.2 kb) to form virus particles. Previous studies on negatively stained Aura virus particles predicted that there were two major size classes with potential T=3 and T=4 capsid structures. We have used cryoelectron microscopy and three-dimensional image reconstruction techniques to examine the native morphology of different classes of Aura virus particles produced in BHK cells. Purified particles separated into two components in a sucrose gradient. Reconstructions of particles in the top and bottom components were computed to resolutions of 17 and 21 A, respectively, and compared with reconstructions of Sindbis virus and Ross River virus particles. Aura virus particles of both top and bottom components have similar, T=4 structures that resemble those of other alphaviruses. The morphology of Aura virus glycoprotein spikes closely resembles that of Sindbis virus spikes and is detectably different from that of Ross River virus spikes. Thus, some aspects of the surface structure of members of the Sindbis virus lineage have been conserved, but other aspects have diverged from the Semliki Forest/Ross River virus lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号