首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
New insights on trehalose: a multifunctional molecule   总被引:57,自引:0,他引:57  
Trehalose is a nonreducing disaccharide in which the two glucose units are linked in an alpha,alpha-1,1-glycosidic linkage. This sugar is present in a wide variety of organisms, including bacteria, yeast, fungi, insects, invertebrates, and lower and higher plants, where it may serve as a source of energy and carbon. In yeast and plants, it may also serve as a signaling molecule to direct or control certain metabolic pathways or even to affect growth. In addition, it has been shown that trehalose can protect proteins and cellular membranes from inactivation or denaturation caused by a variety of stress conditions, including desiccation, dehydration, heat, cold, and oxidation. Finally, in mycobacteria and corynebacteria, trehalose is an integral component of various glycolipids that are important cell wall structures. There are now at least three different pathways described for the biosynthesis of trehalose. The best known and most widely distributed pathway involves the transfer of glucose from UDP-glucose (or GDP-glucose in some cases) to glucose 6-phosphate to form trehalose-6-phosphate and UDP. This reaction is catalyzed by the trehalose-P synthase (TPS here, or OtsA in Escherichia coli ). Organisms that use this pathway usually also have a trehalose-P phosphatase (TPP here, or OtsB in E. coli) that converts the trehalose-P to free trehalose. A second pathway that has been reported in a few unusual bacteria involves the intramolecular rearrangement of maltose (glucosyl-alpha1,4-glucopyranoside) to convert the 1,4-linkage to the 1,1-bond of trehalose. This reaction is catalyzed by the enzyme called trehalose synthase and gives rise to free trehalose as the initial product. A third pathway involves several different enzymes, the first of which rearranges the glucose at the reducing end of a glycogen chain to convert the alpha1,4-linkage to an alpha,alpha1,1-bond. A second enzyme then releases the trehalose disaccharide from the reducing end of the glycogen molecule. Finally, in mushrooms there is a trehalose phosphorylase that catalyzes the phosphorolysis of trehalose to produce glucose-1-phosphate and glucose. This reaction is reversible in vitro and could theoretically give rise to trehalose from glucose-1-P and glucose. Another important enzyme in trehalose metabolism is trehalase (T), which may be involved in energy metabolism and also have a regulatory role in controlling the levels of trehalose in cells. This enzyme may be important in lowering trehalose concentrations once the stress is alleviated. Recent studies in yeast indicate that the enzymes involved in trehalose synthesis (TPS, TPP) exist together in a complex that is highly regulated at the activity level as well as at the genetic level.  相似文献   

3.
The present studies confirm that storage carbohydrate synthesis from [1-(13)C]glucose is elevated in Manduca sexta parasitized by Cotesia congregata, despite a decrease in the rate of metabolism of the labeled substrate. Further, the results demonstrate that a similar pattern of carbohydrate synthesis and glucose metabolism was induced in normal larvae by administration of the glycolytic inhibitor, iodoacetate. (13)C enrichment of C6 of trehalose and glycogen demonstrated randomization of the C1 label at the triose phosphate step of the glycolytic/gluconeogenic pathway and suggested that gluconeogenesis, that is, de novo carbohydrate formation, contributed to the synthesis of carbohydrate in both normal and parasitized insects. Accounting for differences in the (13)C enrichment in C1 of trehalose and glycogen due to direct labeling from [1-(13)C]glucose, the mean C6/C1 labeling ratios in trehalose and glycogen of parasitized larvae and insects treated with iodoacetate were greater than the mean ratio observed in normal larvae, suggesting a greater contribution of gluconeogenesis to trehalose labeling in parasitized insects. This conclusion was confirmed by additional investigations on the metabolism of [3-(13)C]alanine by normal and parasitized insects. The pattern of (13)C enrichment in hemolymph trehalose observed in normal larvae maintained on a low carbohydrate diet indicated a large contribution of gluconeogenesis, while gluconeogenesis contributed very little to trehalose labeling in normal insects maintained on a high carbohydrate diet. Parasitized insects maintained on a high or a low carbohydrate diet displayed a significantly greater contribution of gluconeogenesis to trehalose labeling than was observed in normal larvae maintained on the same diets. In conclusion, these investigations indicate that regulation over the utilization of dietary glucose for trehalose and glycogen synthesis as well as the dietary regulation of de novo carbohydrate synthesis were altered by parasitism.  相似文献   

4.
In the yeast Saccharomyces cerevisiae, the synthesis of endogenous trehalose is catalyzed by a trehalose synthase complex, TPS, and its hydrolysis relies on a cytosolic/neutral trehalase encoded by NTH1. In this work, we showed that NTH2, a paralog of NTH1, encodes a functional trehalase that is implicated in trehalose mobilization. Yeast is also endowed with an acid trehalase encoded by ATH1 and an H+/trehalose transporter encoded by AGT1, which can together sustain assimilation of exogenous trehalose. We showed that a tps1 mutant defective in the TPS catalytic subunit cultivated on trehalose, or on a dual source of carbon made of galactose and trehalose, accumulated high levels of intracellular trehalose by its Agt1p-mediated transport. The accumulated disaccharide was mobilized as soon as cells entered the stationary phase by a process requiring a coupling between its export and immediate extracellular hydrolysis by Ath1p. Compared to what is seen for classical growth conditions on glucose, this mobilization was rather unique, since it took place prior to that of glycogen, which was postponed until the late stationary phase. However, when the Ath1p-dependent mobilization of trehalose identified in this study was impaired, glycogen was mobilized earlier and faster, indicating a fine-tuning control in carbon storage management during periods of carbon and energy restriction.  相似文献   

5.
The amounts of glycogen and trehalose have been measured in cells of a prototrophic diploid yeast strain subjected to a variety of nutrient limitations. Both glycogen and trehalose were accumulated in cells deprived specifically of nirogen, sulfur, or phosphorus, suggesting that reserve carbohydrate accumulation is a general response to nutrient limitation. The patterns of accumulation and utilization of glycogen and trehalose were not identical under these conditions, suggesting that the two carbohydrates may play distinct physiological roles. Glycogen and trehalose were also accumulated by cells undergoing carbon and energy limitation, both during diauxic growth in a relatively poor medium and during the approach to stationary phase in a rich medium. Growth in the rich medium was shown to be carbon or energy limited or both, although the interaction between carbon source limitation and oxygen limitation was complex. In both media, the pattern of glycogen accumulation and utilization was compatible with its serving as a source of energy both during respiratory adaptation and during a subsequent starvation. In contrast, the pattern of trehalose accumulation and utilization seemed compatible only with the latter role. In cultures that were depleting their supplies of exogenous glucose, the accumulation of glycogen began at glucose concentrations well above those sufficient to suppress glycogen accumulation in cultures growing with a constant concentration of exogenous glucose. The mechanism of this effect is not clear, but may involve a response to the rapid rate of change in the glucose concentration.  相似文献   

6.
The levels of glycogen, free trehalose, and lipid-bound trehalose were compared in Mycobacterium smegmatis grown under various conditions of nitrogen limitation. In a mineral salts medium supplemented with yeast extract and containing fructose as the carbon source, the accumulation of glycogen increased dramatically as the NH(4)Cl content of the medium was lowered. However, levels of free trehalose remained relatively constant. Cells were grown in low nitrogen medium and were then shifted to medium containing high nitrogen. Under these conditions, there was a rapid accumulation of glycogen in low nitrogen, and this glycogen was rapidly depleted when cells were placed in high nitrogen medium. Again the concentration of free trehalose remained fairly constant. However, when cells were grown in low nitrogen medium with [(14)C]fructose and then transferred to high nitrogen medium with unlabeled fructose, the specific radioactivity (counts per minute per micromole) of the free trehalose fell immediately, indicating that it was being synthesized and turned over continually. On the other hand, the specific radioactivity of the glycogen and bound trehalose declined much more slowly, suggesting that these two compounds were not turning over as rapidly or were being synthesized at a much slower rate. Experiments on the incorporation of [(14)C]fructose into glycogen and trehalose indicated that cells in high nitrogen medium synthesized much less glycogen than those in low nitrogen. However, synthesis of both free trehalose and bound trehalose was the same in both cases. The specific enzymatic activities of the glycogen synthetase and the trehalose phosphate synthetase varied somewhat from one growth condition to another, but there was no correlation between enzymatic activity and the amount of glycogen or trehalose, suggesting that changes in glycogen levels were not due to increased synthetic capacity. The glycogen synthetase was purified about 35-fold and its properties were examined. This enzyme was specific for adenosine diphosphate glucose as the glucosyl donor.  相似文献   

7.
Several factors may control trehalose and glycogen synthesis, like the glucose flux, the growth rate, the intracellular glucose-6-phosphate level and the glucose concentration in the medium. Here, the possible relation of these putative inducers to reserve carbohydrate accumulation was studied under well-defined growth conditions in nitrogen-limited continuous cultures. We showed that the amounts of accumulated trehalose and glycogen were regulated by the growth rate imposed on the culture, whereas other implicated inducers did not exhibit a correlation with reserve carbohydrate accumulation. Trehalose accumulation was induced at a dilution rate (D)相似文献   

8.
In the yeast Saccharomyces cerevisiae, glycogen is accumulated as a carbohydrate reserve when cells are deprived of nutrients. Yeast mutated in SNF1, a gene encoding a protein kinase required for glucose derepression, has diminished glycogen accumulation and concomitant inactivation of glycogen synthase. Restoration of synthesis in an snf1 strain results only in transient glycogen accumulation, implying the existence of other SNF1-dependent controls of glycogen storage. A genetic screen revealed that two genes involved in autophagy, APG1 and APG13, may be regulated by SNF1. Increased autophagic activity was observed in wild-type cells entering the stationary phase, but this induction was impaired in an snf1 strain. Mutants defective for autophagy were able to synthesize glycogen upon approaching the stationary phase, but were unable to maintain their glycogen stores, because subsequent synthesis was impaired and degradation by phosphorylase, Gph1p, was enhanced. Thus, deletion of GPH1 partially reversed the loss of glycogen accumulation in autophagy mutants. Loss of the vacuolar glucosidase, SGA1, also protected glycogen stores, but only very late in the stationary phase. Gph1p and Sga1p may therefore degrade physically distinct pools of glycogen. Pho85p is a cyclin-dependent protein kinase that antagonizes SNF1 control of glycogen synthesis. Induction of autophagy in pho85 mutants entering the stationary phase was exaggerated compared to the level in wild-type cells, but was blocked in apg1 pho85 mutants. We propose that Snf1p and Pho85p are, respectively, positive and negative regulators of autophagy, probably via Apg1 and/or Apg13. Defective glycogen storage in snf1 cells can be attributed to both defective synthesis upon entry into stationary phase and impaired maintenance of glycogen levels caused by the lack of autophagy.  相似文献   

9.
The direct effects of insulin and glucose on glycogen accumulation were compared using monolayers of chicken embryo hepatocytes which, when cultured in chemically defined medium without hormones, retain viability for several days but become depleted of glycogen. The data strongly suggest that insulin is the major direct signal for hepatic glycogen synthesis, while glucose supports glycogen accumulation primarily in its role as a substrate. Insulin alone, when added to the cells in physiological concentrations, either shortly after isolation or throughout culture, restored glycogen to the maximal levels found in the liver of the fed chicken. Addition of increasing amounts of glucose in the absence of insulin, in contrast, yielded proportional but limited increases in glycogen deposition attaining not more than 30% of the maximal storage capacity of the cells. This hormone-independent glycogenesis was characterized by a 30-min burst of glycogen deposition immediately following a stepped increase of glucose, with no detectable change in glycogen synthase activity. Insulin-dependent glycogenesis evidenced a much slower rate of glycogen deposition and was accompanied by a near tripling of glycogen synthase activity. Insulin-induced glycogen stores were broken down following removal of the hormone, even when glucose was present in great excess, indicating that the cells require insulin to maintain as well as build up maximal levels of glycogen. In the presence of glucagon, insulin-induced glycogen stores were rapidly degraded, but glucose-induced glycogenesis was not inhibited. The actions of insulin and glucose in this system are both qualitatively and quantitatively similar to those that have been observed in the diabetic animal.  相似文献   

10.
《Journal of Asia》2019,22(3):786-794
Glycogen synthase (GS) and glycogen phosphorylase (GP) are two key enzymes in the glycogen synthesis pathway, which catalyze trehalose and glucose transformation in insects. GS and GP can be regulated by trehalose metabolism, which plays an important role in insect growth. However, it is not known whether these genes can be targeted for pest control through regulation of chitin metabolism. We studied the function of Nilaparvata lugens GS and GP (NLGS and NLGP, respectively) using RNA interference, and reported that trehalose and the chitin biosynthesis pathways are regulated by GP and GS, especially TPS3, TRE1-1, and G6PI1, which decreased following knockdown of these two genes. The expression levels of TPS1, TPS2, and several chitin synthesis pathway family genes were significantly increased following dsNlGP injection. Additionally, despite there being no apparent change to the chitin content, an abnormal molting phenotype and wing deformity appeared, and close to 25% insects died. These results demonstrate that silencing of NLGP or NLGS can lead to molting deformities and an elevated mortality rate through the regulation of chitin pathway genes and chitinase genes. NLGP may play a key role in chitin synthesis due to the number of genes regulated, and higher deformity and mortality rates resulting from its knockdown.  相似文献   

11.
The finding that during recovery from high intensity exercise, rats have the capacity to replenish their muscle glycogen stores even in the absence of food intake has provided us with an experimental model of choice to explore further this process. Our objective here is to share those questions arising from research carried out by others and ourselves on rats and humans that are likely to be of interest to comparative biochemists/physiologists. On the basis of our findings and those of others, it is proposed that across vertebrate species: (1). the capacity of muscles to replenish their glycogen stores from endogenous carbon sources is dependent on the type of physical activity and animal species; (2). lactate and amino acids are the major endogenous carbon sources mobilized for the resynthesis of muscle glycogen during recovery from exercise, their relative contributions depending on the duration of recovery and type of exercise; (3). the relative contributions of lactate glyconeogenesis and hepatic/renal gluconeogenesis to muscle glycogen synthesis is species- and muscle fiber-dependent; and (4). glycogen synthase and phosphorylase play an important role in the control of the rate of glycogen synthesis post-exercise, with the role of glucose transport being species-dependent.  相似文献   

12.
The kinetic model of carbohydrate metabolism has been expanded to include: (a) the accumulation of alpha and beta-cellulose, insoluble cell-wall glycogen and mucopolysaccharide; (b) the role of RNA turnover as a source of carbon for end-product synthesis and as a buffer regulating the level of uridine nucleotides in this metabolic network; and (c) the role of purine-nucleoside phosphorylase, 5'-AMP nucleotidase, nucleosidediphosphate kinase and polynucleotide phosphorylase. One of many predictions based on this model is that cells differentiating in the presence of glucose will produce sorocarps with an abnormally high trehalose to cellulose ratio. External perturbation of either the model or of developing cells by glucose increases the levels of sorocarp trehalose and glycogen, 5-fold and 6-fold respectively. Evaluation of the experimental data and the simulation analyses have allowed several predictions to be made concerning the compartmentation of metabolites and the permeability of cells to glucose during differentiation.  相似文献   

13.
The lack of trehalose accumulation in most plant species has been partly attributed to the presence of an active trehalase. Although trehalose synthesis enzymes are thought to be cytosolic, and previous studies have indicated that trehalase activity is extracellular, the exact location of the enzyme has not yet been established in plant cell. We present evidence that the yet uncharacterised full-length Arabidopsis trehalase is a plasma membrane-bound protein, probably anchored to the membrane through a predicted N-terminal membrane spanning domain. The full-length AtTRE1, when expressed in yeast can functionally substitute for the extracellularly active trehalase Ath1p, by sustaining the growth of an ath1 null mutant strain on trehalose and at pH 4.8. We further demonstrate that AtTRE1 expressed in yeast is plasma membrane-bound as in plant cell. In light of these findings, the regulation of plant cell endogenous trehalose by trehalase is discussed.  相似文献   

14.
Yeasts and filamentous fungi are endowed with two different trehalose-hydrolysing activities, termed acid and neutral trehalases according to their optimal pH for enzymatic activity. A wealth of information already exists on fungal neutral trehalases, while data on localization, regulation and function of fungal acid trehalases have remained elusive. The gene encoding the latter enzyme has now been isolated from two yeast species and two filamentous fungi, and sequences encoding putative acid trehalase can be retrieved from available public sequences. Despite weak similarities between amino acids sequences, this type of trehalase potentially harbours either a transmembrane segment or a signal peptide at the N-terminal sequence, as deduced from domain prediction algorithms. This feature, together with the demonstration that acid trehalase from yeasts and filamentous fungi is localized at the cell surface, is consistent with its main role in the utilisation of exogenous trehalose as a carbon source. The growth on this disaccharide is in fact pretty effective in most fungi except in Saccharomyces cerevisiae. This yeast species actually exhibits a "Kluyver effect" on trehalose. Moreover, an oscillatory behaviour reminiscent of what is observed in aerobic glucose-limited continuous cultures at low dilution rate is also observed in batch growth on trehalose. Finally, the S. cerevisiae acid trehalase may also participate in the catabolism of endogenous trehalose by a mechanism that likely requires the export of the disaccharide, its extracellular hydrolysis, and the subsequent uptake of the glucose released. Based on these recent findings, we suggest to rename "acid" and "neutral" trehalases as "extracellular" and "cytosolic" trehalases, which is more adequate to describe their localization and function in the fungal cell.  相似文献   

15.
Trehalose is a major storage carbohydrate in budding yeast, Saccharomyces cerevisiae. Alterations in trehalose synthesis affect carbon source-dependent growth, accumulation of glycogen and sporulation. Trehalose is synthesized by trehalose phosphate synthase (TPS), which is a complex of at least four proteins. In this work, we show that the Tps1p subunit protein catalyses trehalose phosphate synthesis in the absence of other TPS components. The tps1-H223Y allele (glc6-1) that causes a semidominant decrease in glycogen accumulation exhibits greater enzyme activity than wild-type TPS1 because, unlike the wild-type enzyme, TPS activity in tps1-H223Y cells is not inhibited by phosphate. Poor sporulation in tps1 null diploids is caused by reduced expression of meiotic inducers encoded by IME1, IME2 and MCK1. Furthermore, high-copy MCK1 or heterozygous hxk2 mutations can suppress the tps1 sporulation trait. These results suggest that the trehalose-6-phosphate inhibition of hexokinase activity is required for full induction of MCK1 in sporulating yeast cells.  相似文献   

16.
When conditions are unfavorable, virtually all living cells have the capability of entering a resting state termed quiescence or G0. Many aspects of the quiescence program as well as the mechanisms governing the entry and exit from quiescence remain poorly understood. Previous studies using the budding yeast Saccharomyces cerevisiae have shown that upon entry into stationary phase, a quiescent cell population emerges that is heavier in density than nonquiescent cells. Here, we show that total intracellular trehalose and glycogen content exhibits substantial correlation with the density of individual cells both in stationary phase batch cultures and during continuous growth. During prolonged quiescence, trehalose stores are often maintained in favor over glycogen, perhaps to fulfill its numerous stress-protectant functions. Immediately upon exit from quiescence, cells preferentially metabolize trehalose over other fuel sources. Moreover, cells lacking trehalose initiate growth more slowly and frequently exhibit poor survivability. Together, our results support the view that trehalose, which is more stable than other carbohydrates, provides an enduring source of energy that helps drive cell cycle progression upon return to growth.  相似文献   

17.
The effect of yeast propagated at different aeration conditions on yeast physiology, fermentation ability, and beer quality was investigated using three strains of Saccharomyces cerevisiae. It was shown that yeast cells grown under continuous aeration conditions during propagation were almost two times higher as compared with discontinuous aeration conditions. The maximum of cell growth of all samples reached between 36 h and 48 h. The concentration of trehalose was increased under continuous aerated yeasts, whereas glycogen was decreased. It was also observed that the concentration of glycogen and trehalose in yeast cells had no direct effect on subsequent fermentation ability. The effect of yeast propagated under different aeration conditions on subsequent fermentation ability was different from yeast strains, in which the influence will be most pronounced at the first fermentation. Later, the yeasts might regain its original characteristics in the following fermentations. Generally, continuously propagated yeast had a positive effect on beer quality in subsequent fermentation. Hence, the concentration of aroma compounds obtained with yeast propagated under 6 1/h for 48 h aeration was lower than those grown under other aeration conditions in the bottom yeasts; in particular, the amounts of phenylethyl alcohol, ester, and fatty acids were decreased.  相似文献   

18.
Ceramides are a novel class of biologically active molecules involved in the regulation of different signaling pathways. Ceramide is involved in regulation of the phospholipase D (PLD) activity and development of cell resistance to insulin. In this work, we have studied age-related features of insulin regulation of PLD activity and glucose metabolism in intact cells and modeled their resistance to insulin by exogenous ceramide and palmitic acid. Contents of ceramides and of free fatty acids (FFA) are found to increase with age, as well as on incubation of liver cells of young rats in the presence of the ceramide precursor palmitic acid. Under these conditions, the ability of insulin to activate PLD, the cell uptake of glucose, and glycogen synthesis sharply decreased. On incubation of hepatocytes of young animals in the presence of exogenous C2-ceramide, the contents of endogenous ceramides increased but not the contents of FFAs and of neutral lipids. These events were accompanied by suppression of the insulin-induced production of phosphatidylethanol (a result of ethanol transphosphatidylation by PLD), glucose uptake, and glycogen synthesis. Incubation of insulin-resistant liver cells of young rats and also of hepatocytes of old rats in the presence of myriocin (an inhibitor of the de novo synthesis of ceramide) was associated with a decrease in ceramide content in the cells and an increase in the cell sensitivity to insulin. The findings indicate an important role of ceramide in disturbance of insulin signaling due to inhibition of the PLD-dependent link in the liver cells of old animals.  相似文献   

19.
Astrocytes contain glycogen, an energy buffer, which can bridge local short term energy requirements in the brain. Glycogen levels reflect a dynamic equilibrium between glycogen synthesis and glycogenolysis. Many factors that include hormones and neuropeptides, such as insulin and insulin-like growth factor 1 (IGF-1) likely modulate glycogen stores in astrocytes, but detailed mechanisms at the cellular level are sparse. We used a glucose nanosensor based on Förster resonance energy transfer to monitor cytosolic glucose concentration with high temporal resolution and a cytochemical approach to determine glycogen stores in single cells. The results show that after glucose depletion, glycogen stores are replenished. Insulin and IGF-1 boost the process of glycogen formation. Although astrocytes appear to express glucose transporter GLUT4, glucose entry across the astrocyte plasma membrane is not affected by insulin. Stimulation of cells with insulin and IGF-1 decreased cytosolic glucose concentration, likely because of elevated glucose utilization for glycogen synthesis.  相似文献   

20.
Turkel S 《Mikrobiologiia》2006,75(6):737-741
Trehalose and glycogen accumulate in certain yeast species when they are exposed to unfavorable growth conditions. Accumulations of these reserve carbohydrates in yeasts provide resistance to stress conditions. The results of this study indicate that certain Pichia species do not accumulate high levels of glycogen and trehalose under normal growth conditions. However, depending on the Pichia species, both saccharides accumulate at high levels when the Pichia cells are exposed to unfavorable or stress-inducing growth conditions. Growth on glycerol or methanol mostly led to trehalose accumulation in Pichia species tested in this study. It was shown that the metabolic pathways for glycogen and trehalose biosynthesis are present in Pichia species. However, it appears that the biosynthesis of trehalose and glycogen may be regulated in different manners in Pichia species than in the yeast S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号