首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Selenium deficiency for periods of 5 or 6 weeks in rats produced an inhibition of tri-iodothyronine (T3) production from added thyroxine (T4) in brain, liver and kidney homogenate. This inhibition was reflected in plasma T4 and T3 concentrations, which were respectively increased and decreased in selenium-deficient animals. Although plasma T4 levels increased in selenium-deficient animals, this did not produce the normal feedback inhibition on thyrotropin release from the pituitary. Selenium deficiency was confirmed in the animals by decreased selenium-dependent glutathione peroxidase (Se-GSH-Px) activity in all of these tissues. Administration of selenium, as a single intraperitoneal injection of 200 micrograms of selenium (as Na2SeO3)/kg body weight completely reversed the effects of selenium deficiency on thyroid-hormone metabolism and partly restored the activity of Se-GSH-Px. Selenium administration at 10 micrograms/kg body weight had no significant effect on thyroid-hormone metabolism or on Se-GSH-Px activity in any of the tissues studied. The characteristic changes in plasma thyroid-hormone levels that occurred in selenium deficiency appeared not to be due to non-specific stress factors, since food restriction to 75% of normal intake or vitamin E deficiency produced no significant changes in plasma T4 or T3 concentration. These data are consistent with the view that the Type I and Type II iodothyronine deiodinase enzymes are seleno-enzymes or require selenium-containing cofactors for activity.  相似文献   

2.
Male Wistar rats were fed diets of varying selenium content in order to obtain selenium-deficient and selenium-supplemented rats. After 5-6 weeks on the respective diet, the rats were used to investigate how selenium influences the effect of dimethylnitrosamine (DMN) on some liver enzymes and related reactions. The selenium-dependent glutathione peroxidase activity in postmicrosomal supernatant from liver was about 1% in selenium-deficient rats as compared to selenium-supplemented rats or rats fed a standard diet. The highest DMN-demethylase activity was observed in postmitochondrial supernatant from selenium-deficient rat liver, and the lowest in selenium-supplemented rats. No dietary effect was observed on hepatic microsomal cytochrome P450 levels. C-Oxygenation of N,N-dimethylaniline (DMA) was not affected by the selenium level. On the other hand, selenium deficiency seemed to reduce N-oxygenation of DMA. The mutagenicity of DMN in Chinese hamster V79 cells after metabolic activation by the isolated perfused rat liver, was approximately doubled when selenium-deficient livers were used as compared to selenium-supplemented livers and livers from rats fed a standard diet. A negative correlation between DMA-N-oxygenation and mutagenicity from DMN was observed, whereas no correlation between DMA-C-oxygenation and mutagenicity from DMN was found.  相似文献   

3.
Studies with 75Se have shown the existence of a rat plasma selenoprotein in addition to glutathione peroxidase. Because the function of the protein is not known, it has been referred to as selenoprotein P. A partially purified preparation was used to produce a monoclonal antibody to selenoprotein P. The antibody did not bind glutathione peroxidase as evidenced by its failure to remove glutathione peroxidase activity from rat plasma by immunoprecipitation. An immunoaffinity column was prepared with the monoclonal antibody, and selenoprotein P was purified 1270-fold from rat plasma in a two-step procedure. The purified selenoprotein P migrated in a single band with an Mr of 57,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography demonstrated that this band contained 75Se when the protein was purified from rats which had received 75SeO2-(3). A competitive radioimmunoassay for selenoprotein P was developed. The selenoprotein P concentration in plasma of selenium-replete rats was determined with this assay to be 51 +/- 3.7 micrograms/ml. It was less than 5 micrograms/ml in plasma from selenium-deficient rats. Injection of 50 micrograms of selenium into selenium-deficient rats caused an increase in selenoprotein P from less than 10% of control to 52% of control in 6 h. Plasma glutathione peroxidase activity increased only from 2.2 to 3.1% of control. These experiments demonstrate that rat plasma contains a selenoprotein distinct from glutathione peroxidase. The concentration of this selenoprotein is depressed in selenium deficiency, as is glutathione peroxidase activity, but selenoprotein P increases more rapidly when selenium is supplied than does glutathione peroxidase activity.  相似文献   

4.
An assay for the determination of the newly discovered selenoenzyme, phospholipid hydroperoxide glutathione peroxidase (PH-GPx) in biological material is described. Dietary selenium deficiency and repletion was used as a tool in order to modify this enzyme activity in various mouse organs and to compare it to the activity of the 'classical' selenium-dependent glutathione peroxidase (GPx) (EC 1.11.1.9). A semipurified diet containing less than 12 ppb Se was used for depletion. Controls received this diet supplemented with 500 ppb Se in the form of Na2SeO3. The results showed that a rapid loss of GPx activity occurred in liver, kidney and lungs of selenium-deficient mice which reached undetectable levels within 130 days. In the heart, about 24% of control GPx activity was still present. In contrast, PH-GPx activity was more slowly depleted by Se deficiency and resulted in residual activities ranging from 30 to 70% in the different organs even after 250 days of depletion. In repletion experiments with a single application of 10 or 500 micrograms/kg Se, only the high dose restored either enzyme activity. The data demonstrate that the need for selenium of the two glutathione peroxidases is different. A markedly distinct organ distribution of both enzymes suggests that the heart may be the organ more sensitive to oxidative stress.  相似文献   

5.
Selenium-dependent glutathione peroxidase (Se-GSH-Px, GSH-H2O2 oxidoreductase EC 1.11.1.9) is the best characterized selenoprotein in higher animals, but the mechanism whereby selenium becomes incorporated into the enzyme protein remains under investigation. To elucidate the mechanism of insertion of selenium into Ge-GSH-Px further, we have systematically analyzed and compared the results of Western blot, in vitro translation immunoprecipitation, and Northern blot experiments conducted with liver proteins and RNAs obtained from rats fed on selenium-deficient and selenium-supplemented diets. The anti-serum employed in this study was raised against an electrophoretically pure Se-GSH-Px preparation obtained from rat livers by a simplified purification procedure involving separation by high performance liquid chromatography on a hydrophobic interaction column. Different forms of Se-GSH-Px, including apo-protein, cross-reacted with this antiserum and Western blot analysis found no Se-GSH-Px protein present in livers from rats fed on selenium-deficient diets. By contrast, a distinct protein band corresponding to purified Se-GSH-Px was detected in livers from selenium-supplemented animals, a result consistent with the finding that the Se-GSH-Px activity was reduced to undetectable levels in livers of selenium-deficient rats. The in vitro translation experiments, however, indicated not only that mRNA for Se-GSH-Px was present during selenium deficiency but also that its translation products contained 2-3-fold as much immunoprecipitable protein as the products of poly(A) RNA from livers of selenium-supplemented rats. This result suggests that the Se-GSH-Px mRNA may be increased in the selenium-deficient state. Elevated levels of Se-GSH-Px mRNA were directly demonstrated in Northern blot experiments employing cDNA clone pGPX1211 as a probe. A similar increase in Se-GSH-Px mRNA was observed in such other tissues as kidney, testis, brain, and lung tissue, in selenium-deficient states. The present data support the co-translational mechanism for the incorporation of selenium into Se-GSH-Px in rat liver.  相似文献   

6.
In animals, decreases in selenium-containing glutathione peroxidase activity and the resultant impairment of peroxide metabolism can account for many, but not all of the biochemical and clinical changes caused by selenium deficiency. Recently, however, type I iodothyronine 5'-deiodinase has also been shown to be a selenium-containing enzyme. This explains the impairment of thyroid hormone metabolism caused by selenium deficiency in animals with a normal vitamin E status. Since iodothyronine 5'-deiodinases are essential for the production of the active thyroid hormone 3,5,3'-triiodothyronine, some of the consequences of selenium deficiency may result from thyroid changes rather than inability to metabolise peroxides. In particular, the impaired thyroid hormone metabolism may be responsible for decreased growth and resistance to cold stress in selenium-deficient animals. A further consequence of the role of selenium in thyroid hormone metabolism is the exacerbation of some of the thyroid changes in iodine deficiency by a concurrent selenium deficiency. Selenium status may therefore have a major influence on the outcome of iodine deficiency in both human and animal populations.  相似文献   

7.
In order to investigate the effect of selenium supplementation on RNA in the rat pancreas, the rate of in vitro incorporation of [3H]uridine into RNA by pancreas slices derived from two groups of rats fed either a low-selenium diet or a diet supplemented with 0.25 mg/kg selenium as selenite was examined. The RNA and lipid peroxide contents and glutathione peroxidase activity in homogenates from the pancreas were also determined. After feeding for 12-14 weeks, the rates of [3H]uridine incorporation were significantly higher in the pancreatic tissue from the selenium-supplemented diet group. Concomitantly, an increase in glutathione peroxidase activities and RNA content, and a reduction of lipid peroxides, were also found in the pancreatic tissue of the selenium-supplemented group. The results suggest that selenium supplementation at a level of 0.25 mg/kg selenium could promote RNA synthesis with an increase in glutathione peroxidase activity and a decrease of lipid peroxides.  相似文献   

8.
Relationship between selenium, immunity and resistance against infection   总被引:2,自引:0,他引:2  
1. Food selenium content, selenium supply and selenium needs are presented, along with methods of evaluation of selenium status. Glutathione peroxidase, a selenium-containing enzyme, is ubiquitous in the organism. 2. Some experimental studies on animal models reported a positive relationship between selenium status and resistance against infections. 3. Only one study in humans concerned the mechanisms of immune functions in selenium deficiency. Several experimental works suggest that severe selenium deficiency compromises T-cell dependent immune functions such as the blastogenic response to mitogens, but selenium deficiency was concomitant with vitamin E deficiency in most of them. Delayed hypersensitivity response is controversial in selenium-supplemented rats and guinea-pigs. 4. Selenium deficiency in animals decreases the antibody response, especially if associated with vitamin E deficiency. Low dietary selenium supplementation of healthy animals has a positive effect upon humoral responses. 5. Despite some controversies, most experimental studies on selenium-deficient animals report normal phagocytosis and an altered bactericidal capacity of neutrophils. The decrease in glutathione peroxidase activity of polymorphonuclear cells following selenium deficiency could explain some of these alterations. 6. Splenic Natural Killer cells activity is enhanced in selenium-supplemented, healthy animals.  相似文献   

9.
Increased O2 metabolism imposed by physical exercise is likely to augment the production of active O2 species that have been shown to react with lipids, proteins, and DNA. Antioxidants and antioxidant enzymes, such as the selenium enzyme glutathione peroxidase, minimize or prevent such potentially toxic reactions. This study shows that selenium deficiency decreases glutathione peroxidase activity in liver and muscle (less than 80%, P less than 0.001), increases total glutathione in liver, muscle, and plasma (P less than 0.05) and increases muscle cytochrome oxidase activity, and ubiquinone content (P less than 0.05) but has no effect on endurance capacity. Exercise to exhaustion resulted in a significant (P less than 0.001) elevation of total and oxidized glutathione (GSSG) and a significant (P less than 0.05) decrease of vitamin E in plasma of control and selenium-deficient rats. Acute exercise also increased tissue GSSG levels in both control and selenium-deficient groups of rats. Hence, despite a large depletion of selenium-deficient glutathione peroxidase, pronounced oxidation of glutathione to GSSG can be produced by the increased oxidative metabolism during physical exercise. The results suggest that the residual glutathione peroxidase activity is sufficient to detoxify hydroperoxides in exercising selenium-deficient animals and to prevent the impairment of endurance capacity.  相似文献   

10.
Selenium is an essential component of glutathione peroxidase, an enzyme which protects cells against peroxidation and controls concentrations of intracellular peroxides. Since selenium deficiency is clinically associated with an increased degree of atherosclerosis, the effects of selenium deficiency on prostacyclin (PGI2) and platelet activating factor (PAF) production by cultured human umbilical vein endothelial cells (HUVEC) were investigated. In selenium-deficient HUVEC, histamine-induced PGI2 synthesis was significantly decreased when compared to selenium-supplemented HUVEC; in contrast, histamine-induced PAF production was increased by selenium deficiency. Histamine-induced inositol trisphosphate and [Ca2+]i responses and the conversion of PGG2 and PGH2 to PGI2 were not altered by selenium deficiency. However, selenium deficiency decreased the conversion of exogenous arachidonate to PGI2 and markedly suppressed glutathione peroxidase activity. These results suggest that selenium deficiency, by decreasing glutathione peroxidase activity, makes HUVEC susceptible to peroxide-induced inhibition of the cyclooxygenase activity of PGH2 synthase, resulting in decreased PGI2 production. These changes may alter platelet function in vivo and thus play a role in the increased incidence of atherosclerosis reported in selenium-deficient individuals.  相似文献   

11.
The main purpose of the present investigation was to produce young rats with severe selenium deficiency, but with no clinical signs of this deficiency, and to examine their liver and red blood cell (RBC) glutathione peroxidase activities during selenium repletion. To achieve this goal, female breeders were fed a selenium-deficient diet beginning 2 weeks before mating. The liver glutathione peroxidase activity of the dams was significantly lower than the activity of comparable nonpregnant females after 5 and 10 weeks of selenium depletion. This difference arose exclusively during the period of pregnancy. In contrast, the RBC glutathione peroxidase activity was significantly increased during this period. Only traces of liver enzyme activity were found in the offspring, and the RBC enzyme activity was only 2% of that of the selenium-repleted controls. Body weight was retarded in the male offspring. However, no severe signs of clinical selenium deficiency were observed. The glutathione peroxidase activity in the liver and RBCs of the offspring was determined after 0, 2, 4, 7, 14, and approximately 40 days of selenium repletion. The liver enzyme activity increased faster in females than in males, while the opposite was found for the RBCs. After 14 days of selenium repletion, the glutathione peroxidase activity of the liver was essentially restored, and the RBC enzyme activity was about half that of the control values. This type of rat may prove useful in studies in which young selenium-deficient rats are preferable, as well as in studies of selenium functions that might not be directly related to the role of selenium in glutathione peroxidase.  相似文献   

12.
Selenium deficiency and vitamin E deficiency both affect xenobiotic metabolism and toxicity. In addition, selenium deficiency causes changes in the activity of some glutathione-requiring enzymes. We have studied glutathione metabolism in isolated hepatocytes from selenium-deficient, vitamin E-deficient, and control rats. Cell viability, as measured by trypan blue exclusion, was comparable for all groups during the 5-h incubation. Freshly isolated hepatocytes had the same glutathione concentration regardless of diet group. During the incubation, however, the glutathione concentration in selenium-deficient hepatocytes rose to 1.4 times that in control hepatocytes. The selenium-deficient cells also released twice as much glutathione into the incubation medium as did the control cells. Total glutathione (intracellular plus extracellular) in the incubation flask increased from 47.7 +/- 8.9 to 152 +/- 16.5 nmol/10(6) selenium-deficient cells over 5 h compared with an increase from 46.7 +/- 7.1 to 92.0 +/- 17.4 nmol/10(6) control cells and from 47.7 +/- 11.7 to 79.5 +/- 24.9 nmol/10(6) vitamin E-deficient cells. This overall increase in glutathione concentration suggested that glutathione synthesis was accelerated by selenium deficiency. The activity of gamma-glutamylcysteine synthetase was twice as great in selenium-deficient liver supernatant (105,000 X g) as in vitamin E-deficient or control liver supernatant (105,000 X g). Hemoglobin-free perfused livers were used to determine the form of glutathione released and its route. Selenium-deficient livers released 4 times as much GSH into the caval perfusate as did control livers. Plasma glutathione concentration in selenium-deficient rats was found to be 2-fold that in control rats, suggesting that increased GSH synthesis and release is an in vivo phenomenon associated with selenium deficiency.  相似文献   

13.
Selenium repletion of selenium-deficient rats with 20 μg selenium/kg body weight as Na2SeO3 was used as a model to investigate the mechanisms that control the distribution of the trace element to specific selenoproteins in liver and thyroid. Cytosolic glutathione peroxidase (cGSHPx), phospholipid hydroperoxide glutathione peroxidase (PHGSHPx), and iodothyronine 5′-deiodinase (IDI) activities were all transiently increased in liver 16 to 32 h after ip injection with selenium. However, only cGSHPx and PHGSHPx activities increased in the thyroid where IDI activity was already increased by selenium deficiency. These responses were owing to synthesis of the seleoproteins on newly synthesised and/or existing mRNAs. The selenoprotein mRNAs in the thyroid gland were increased two- and threefold after the transitory increases in selenoprotein activity. In contrast, there were parallel changes in selenoprotein mRNAs and enzyme activities in the liver, with no prolonged rises in mRNA levels. The organ differences suggest that increased thryotrophin (TSH) concentrations, which are known to induce thyrodial IDI and mRNA, may control the mRNAs for all the thyroidal selenoproteins investigated and be a major mechanism for the preservation of thyroidal selenoproteins when selenium supplies are limited.  相似文献   

14.
Type I 5′-deiodinase was recently characterized as a selenocysteine-containing enzyme in humans and other mammals. Up to now, the effect of selenium (Se) supplementation on thyroid hormone metabolism in humans has only been reported in the very peculiar nutritional environment of Central Africa, where combined severe iodine and Se deficiency occurs. In this study, a group of phenylketonuria subjects with a low selenium status, but a normal iodine intake were supplemented with selenium to investigate changes in their thyroid hormone metabolism. After 3 wk of selenium supplementation (1 μg/kg/d), both the concentrations of the prohormone thyroxine (T4) and the metabolic inactive reverse triiodothyronine (rT3) decreased significantly. Clinically, the phenylketonuria subjects remained euthyroid before and after selenium supplementation. The individual changes of plasma Se and glutathione peroxidase activity were closely associated with individual changes of plasma T4 and rT3.  相似文献   

15.
The purpose of this study was to determine the effect of selenium deficiency on tissue taurine levels and urinary taurine excretion. Weanling male Sprague-Dawley rats were fed selenium-deficient or selenium-adequate diets for 20 weeks. As selenium deficiency developed, urinary taurine excretion increased in selenium-deficient rats compared to controls. At 12 weeks, the selenium-deficient rats excreted 1.7-fold more taurine than control rats. At the same time plasma glutathione peroxidase was 1.2% of control and plasma glutathione was 226% of control. At 20 weeks, renal taurine was decreased but renal glutathione was increased in selenium-deficient rats compared to controls. Feeding the experimental diet for 6 weeks without methionine supplementation caused a fall in urinary taurine excretion. However, there was no difference between selenium-deficient and control rats. These results indicate that selenium deficiency affects renal handling of taurine in the rat when dietary sulfur amino acids are not restricted.  相似文献   

16.
17.
To determine the effect of Se status on the level of mRNA for Se-dependent glutathione peroxidase (EC 1.11.1.9), rats were fed either a Se-deficient torula yeast diet (less than 0.02 mg Se/kg diet) or a Se-adequate diet (+0.2 mg Se/kg as Na2SeO3) for greater than 135 d. Liver glutathione peroxidase activity was 0.025 for Se-deficient versus 0.615 EU/mg protein for Se-adequate rats. Total liver RNA and polyadenylated RNA were isolated and subjected to Northern blot analysis using a 700 bp DNA probe from cloned murine glutathione peroxidase. Autoradiography showed that Se-deficient liver had 7-17% of the mRNA for glutathione peroxidase present in Se-adequate liver, suggesting that Se status may regulate the level of mRNA for this selenoenzyme.  相似文献   

18.
Effect of selenium deficiency on the disposition of plasma glutathione   总被引:1,自引:0,他引:1  
Selenium deficiency causes increased hepatic synthesis and release of GSH into the blood. The purpose of this study was to examine the effect of selenium deficiency on the disposition of plasma glutathione. Plasma glutathione concentration was 40 +/- 3.4 nmol GSH equivalents/ml in selenium-deficient rats and 17 +/- 5.4 nmol GSH equivalents/ml in control rats. The half-life and systemic clearance of plasma glutathione were found to be the same in selenium-deficient and control rats (t1/2 = 3.4 +/- 0.7 min). Because selenium-deficient plasma glutathione concentration was twice that of control, the determination that selenium deficiency did not affect glutathione plasma systemic clearance indicated that the flux of glutathione through the plasma was doubled by selenium deficiency. It has been proposed that the kidney is responsible for the removal of a major fraction of plasma glutathione. In these studies, renal clearance accounted for 24% of plasma systemic glutathione clearance in controls and 44% in selenium-deficient rats. This indicates that a significant amount of glutathione is metabolized at extrarenal sites, especially in control animals. More than half of the increased plasma glutathione produced in selenium deficiency was removed by the kidney. Thus, selenium deficiency results in a doubling of cysteine transport in the form of glutathione from the liver to the periphery as well as a doubling of plasma glutathione concentration.  相似文献   

19.
20.
观察了亚硒酸钠,AC1,AC3对大鼠晶状体中谷胱甘肽过氧化物酶(GSH-Px),谷胱甘肽还原酶(GR)及谷胱甘肽硫转移酶(GST)的影响。结果表明,亚硒酸钠组大鼠的晶状体尚未混浊前已出现GSH-Px活性增高及GR和GST的活性降低。GR活性下降随白内障进展而加重。AC1及AC3均可使亚硒酸钠所致的酶活性变化逆转,但对正常晶状体的酶活性没有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号