首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A new myxosporean species is described from the fish Semaprochilodus insignis captured from the Amazon River, near Manaus. Myxobolus insignis sp. n. was located in the gills of the host forming plasmodia inside the secondary gill lamellae. The spores had a thick wall (1.5-2 microm) all around their body, and the valves were symmetrical and smooth. The spores were a little longer than wide, with rounded extremities, in frontal view, and oval in lateral view. They were 14.5 (14-15) microm long by 11.3 (11-12) microm wide and 7.8 (7-8) microm thick. Some spores showed the presence of a triangular thickening of the internal face of the wall near the posterior end of the polar capsules. This thickening could occur in one of the sides of the spore or in both sides. The polar capsules were large and equal in size surpassing the midlength of the spore. They were oval with the posterior extremity rounded, and converging anteriorly with tapered ends. They were 7.6 (7-8) microm long by 4.2 (3-5) microm wide, and the polar filament formed 6 coils slightly obliquely to the axis of the polar capsule. An intercapsular appendix was present. There was no mucous envelope or distinct iodinophilous vacuole.  相似文献   

2.
A fish-infecting Microsporidia Potaspora morhaphis n. gen., n. sp. found adherent to the wall of the coelomic cavity of the freshwater fish, Potamorhaphis guianensis, from lower Amazon River is described, based on light microscope and ultrastructural characteristics. This microsporidian forms whitish xenomas distinguished by the numerous filiform and anastomosed microvilli. The xenoma was completely filled by several developmental stages. In all of these stages, the nuclei are monokaryotic and develop in direct contact with host cell cytoplasm. The merogonial plasmodium divides by binary fission and the disporoblastic pyriform spores of sporont origin measure 2.8+/-0.3 x 1.5+/-0.2 microm. In mature spores the polar filament was arranged into 9-10 coils in 2 layers. The polaroplast had 2 distinct regions around the manubrium and an electron-dense globule was observed. The small subunit, intergenic space and partial large subunit rRNA gene were sequenced and maximum parsimony analysis placed the microsporidian described here in the clade that includes the genera Kabatana, Microgemma, Spraguea and Tetramicra. The ultrastructural morphology of the xenoma, and the developmental stages including the spores of this microsporidian parasite, as well as the phylogenetic analysis, suggest the erection of a new genus and species.  相似文献   

3.
A microsporidian pathogen, infecting the epithelial cells of the hepatopancreas of Chinese mitten crab, Eriocheir sinensis, was studied by electron microscopy. The detailed ultrastructure of life cycle of the pathogen including proliferative and sporogonic developmental stages are provided. All stages of the parasite are haplokaryotic and develop in a vacuole bounded by a single membrane in contact with host cell cytoplasm. Sporogenesis is synchronous with the same developmental stage in one vacuole. Sporogony shows a characteristic of multinucleate sporogonial plasmodia divided by rosette-like division, producing 4 or 8 sporoblasts. The mature spore is ellipsoidal, length (mean) 1.7 microm, width 1.0 microm, with a uninucleate in the center of the sporoplasm, 7 turns of the polar filament, a bell-like polaroplast of compact membranes and obliquely positioned posterior vacuole. The morphological characteristics of this novel microsporidian pathogen have led us to assign the parasite to a new species of Endoreticulatus, E. eriocheir sp. nov., that has not been reported previously from crab.  相似文献   

4.
SUMMARY. Observations on binary fission of Lacrymaria olor show that it is a transverse fission. It involves probable intranuclear division of the micronucleus. Both micro- and macronucleus elongate in preliminary stages. Each is ultimately divided as cytoplasmic constriction cuts the spindle fibers of the former, and the connecting, nucleoplasmic thread of the latter.
Surging movements of cytoplasm after fission elongate the daughter organisms and move new nuclei to normal, central sites. The anterior proboscis of the posterior daughter regenerates suddenly, complete with coronal cilia. Metachronal waves along ciliary meridians, strongly reversed on the posterior daughter, cause an oscillating movement which pulls the two apart, except for a slender, pellicular thread, ultimately severed. Until broken, this thread connects the rear tip of the anterior animal to the forward end of the proboscis of the posterior one. The organism is semi-quiescent, with proboscis retracted (except spasmodically) throughout fission. After fission the anterior animal quickly begins feeding movements and soon swims away. The posterior animal requires about half an hour before being able to begin feeding and swimming movements.
The anterior contractile vacuole of the original animal becomes the primarily active vacuole of the anterior daughter; the posterior one that of the posterior daughter. Missing vacuoles are regenerated by the daughters in about one hour after fission. The division process requires about one hour for completion at 22.4°C.  相似文献   

5.
The life cycle stages of a new species of the genus Vavraia (Microsporidia, Pleistophoridae), which parasitizes the shrimp Crangon crangon (Crustacea, Decapoda), were examined by light and electron microscopy. This parasite was monomorphic with polysporous sporogony and developed in the skeletal muscle of the host. The multinucleate sporogonial plasmodium divided by plasmotomy and multiple division into uninucleate sporoblasts. All stages were surrounded by a thick and amorphous dense coat external to the plasmalemma. This structure gradually became a merontogenetic sporophorous vacuole (MSV) where the sporonts developed into sporoblasts. The MSV was filled with episporontal granular secretory products and eventually contained up to 50 uninucleate spores. During spore morphogenesis, these episporontal granular products within the MSV became organized as episporontal tubular-like structures. In transverse sections, these structures showed a mean diameter of 1.0 microm, but disappeared during the final phase of the spore maturation. Mature spores were ellipsoidal to slightly pyriform and measured 2.30 x 1.41 microm. The polar filament was anisofilar and consisted of a single coil with six to seven turns (rarely five). This new species is named Vavraia mediterranica n. sp.  相似文献   

6.
Myxobolus metynnis n. sp. (Phylum Myxozoa) is described in the connective subcutaneous tissues of the orbicular region of the fish, Metynnis argenteus (Characidae), collected in the lower Amazon River, near the city of Peixe Boi, Pará State, Brazil. Polysporic, histozoic plasmodia were delimited by a double membrane with numerous microvilli on the peripheral cytoplasm. Several life-cycle stages, including mature spores, were observed. An envelope formed by numerous fine and anastomosed microfibrils was observed at the spore surface. The spore body presented an ellipsoidal shape and was about 13.1 microm long, 7.8 microm wide, and 3.9 microm thick. Elongated-pyriform polar capsules were of equal size, measuring 5.2 microm in length, 3.2 microm in width, and possessing a polar filament with 8-9 turns around the longitudinal axis. The binucleated sporoplasm contained a vacuole and numerous sporoplasmosomes. These were circular in cross-section, showing an adherent eccentric, dense structure, with a half-crescent section. Based on the morphological differences and host specificity, we propose that the parasite is a new species named Myxobolus metynnis n. sp.  相似文献   

7.
A new species of Nematopsis (Apicomplexa, Porosporidae) is described from the mantle tissues of the seawater gastropod, Nerita ascencionis (Neritidae), collected in the Atlantic North off the coast of "Fernando de Noronha" Island (3 degrees 47' 57' S, 32 degrees 25' 12' W) situated about 350 km from the northeast coast of Brazil. Numerous oocysts, each contained in a parasitophorous vacuole, were found in the cytoplasm of phagocytes in the mantle tissue of the host. The phagocytes were surrounded by a thin wall composed of lucent material. The phagocyte cytoplasm contained a nucleus surrounded by numerous vesicles and some dense masses. The oocysts were 21.9 +/- 0.5 microm long, and 11.5 +/- 0.6 microm wide. The oocyst wall was 0.18-0.25 microm thick, and the apical zone contained a micropyle, 1.0-1.2 microm in diameter, covered by a canopy-like operculum about 0.25 microm thick. Externally, the oocyst wall was surrounded by numerous anastomosing microfibrils attached to the wall and extending towards the periphery of the parasitophorous vacuole. Some microfibrils formed a dense complex network that surrounded the oocyst in the middle of the parasitophorous vacuole, which opened only at the apical zone near the external region of the opercular system. On the basis of the data obtained by light and transmission electron microscopy and host specificity, the gregarine Nematopsis gigas is distinguished from the nearest species as a new species. The taxonomic affinities and morphological comparisons with other similar species of the same genus are discussed.  相似文献   

8.
We describe the microsporidian Amazonspora hassar n. gen., n. sp. from the gill xenomas of the teleost Hassar orestis (Doradidae) collected in the estuarine region of the Amazon River. The parasite appeared as a small whitish xenoma located in the gill filaments near the blood vessels. Each xenoma consisted of a single hypertrophic host cell (HHC) in the cytoplasm of which the microsporidian developed and proliferated. The xenoma wall was composed of up to approximately 22 juxtaposed crossed layers of collagen fibers. The plasmalemma of the HHC presented numerous anastomosed, microvilli-like structures projecting outward through the 1-3 first internal layers of the collagen fibrils. The parasite was in direct contact with host cell cytoplasm in all stages of the cycle (merogony and sporogony). Sporogony appears to divide by plasmotomy, giving rise to 4 uninucleate sporoblasts, which develop into uninucleate spores. The ellipsoidal spores measured 2.69 +/- 0.45 x 1.78 +/- 0.18 microm, and the wall measured approximately 75 nm. The anchoring disk of the polar filament was subterminal, being shifted laterally from the anterior pole. The polar filament was arranged into 7-8 coils in a single layer in the posterior half of the spore, surrounding the posterior vacuole. The polaroplast surrounded the uncoiled portion of the polar filament, and it was exclusively lamellar. The spores and different life-cycle stages were intermingled within the cytoplasm of the HHC, surrounding the central hypertrophic deeply branched nucleus. The ultrastructural morphology of this microsporidian parasite suggests the erection of a new genus and species.  相似文献   

9.
The asexual development of Eimeria contorta from sporozoites to first-generation merozoites in tissue culture was investigated with the electron microscope. Sporozoites with a three-layered pellicle, 26 subpellicular microtubules, a conoid, 4-7 rhoptries, and an abundance of micronemes actively entered host cells and showed direct contact to the host cell's cytoplasm. Shortly after penetration, small vacuoles surrounding the parasite merged into a parasitophorous vacuole. Inside this vacuole, sporozoites assumed a definite U-shape before transformation into schizonts took place. This process was characterised by the occurrence of subpellicular microtubules exclusively in the anterior half of the sporozoite, by a degeneration of the 2 inner pellicular membranes, by an outpocketing of the parasite's surface, and by the arrangement of microtubules in clusters. About 25 merozoites were formed at the surface of mature schizonts, to which they remained attached at their posterior pole. A polar ring was present at that area. Anterior and posterior refractile bodies were conspicuous in merozoites and showed close association with mitochondria. The significance of a fibrillar substructure in rhoptries and micronemes is discussed, and special attention is drawn to the pathway of nutrient transport from host cell mitochondria and dictyosomes through intravacuolar folds, parasitophorous vacuole and crescent body into the parasite's food vacuoles.  相似文献   

10.
A parasite of the marine fish Vincentia conspersa was examined by light microscopy and transmission electron microscopy. This parasite develops in the subcutaneous tissue of the body and fins, forming spherical xenomas about 1-2 mm in diameter surrounded by a layer of amorphous material. The observed characteristics of the new parasite are in line with those of the other Glugea species; merogony takes place in the outer zone of the cytoplasm of the host cell, sporogony takes place in sporophorous vesicles, and mature spores are located in the central part of the xenoma. Meronts were cylindrical uninucleate or occasionally triradiate multinucleate, with plasmodia in direct contact with the host cytoplasm. Sporogonic plasmodia divided by multiple cleavage to produce sporoblast mother cells, which after binary fission became sporoblasts. Two types of spores were recognized, both uninucleate, i.e., ovoid or slightly ovoid microspores with a mean size of 5.1 x 2.2 microm and much less frequent as elongated oval macrospores with a mean size of 8.9 x 3.1 microm. The polar tube has between 12 and 14 coils arranged in 1, 2, or 3 layers. Taken together, these characteristics suggest that this microsporidian infecting V. conspersa is a new species of Glugea, which we have named Glugea vincentiae.  相似文献   

11.
A new microsporidian species, Enterocytozoon hepatopenaei sp. nov., is described from the hepatopancreas of the black tiger shrimp Penaeus monodon (Crustacea: Decapoda). Different stages of the parasite are described, from early sporogonal plasmodia to mature spores in the cytoplasm of host-cells. The multinucleate sporogonal plasmodia existed in direct contact with the host-cell cytoplasm and contained numerous small blebs at the surface. Binary fission of the plasmodial nuclei occurred during early plasmodial development and numerous pre-sporoblasts were formed within the plasmodium. Electron-dense disks and precursors of the polar tubule developed in the cytoplasm of the plasmodium prior to budding of early sporoblasts from the plasmodial surface. Mature spores were oval, measuring 0.7 × 1.1 μm and contained a single nucleus, 5-6 coils of the polar filament, a posterior vacuole, an anchoring disk attached to the polar filament, and a thick electron-dense wall. The wall was composed of a plasmalemma, an electron-lucent endospore (10 nm) and an electron-dense exospore (2 nm). DNA primers designed from microsporidian SSU rRNA were used to amplify an 848 bp product from the parasite genome (GenBank FJ496356). The sequenced product had 84% identity to the matching region of SSU rRNA from Enterocytozoon bieneusi. Based upon ultrastructural features unique to the family Enterocytozoonidae, cytoplasmic location of the plasmodia and SSU rRNA sequence identity 16% different from E. bieneusi, the parasite was considered to be a new species, E. hepatopenaei, within the genus Enterocytozoon.  相似文献   

12.
13.
ABSTRACT. Pyrotheca hydropsycheae n. sp. is described from caddis fly larvae, Hydropsyche siltalai Döhler, 1963. All stages were found in oenocytes and fat body cells. Meronts were uni- or binucleate with simple surface membranes. The sporogonic stages were recognized ultrastructurally by the separation of an envelope, the sporophorous vesicle, from their surfaces. Mature sporogonial plasmodia were tetranucleate and gave rise by longitudinal fission to four uninucleate elongate sporoblasts with polar nuclei. Spores were lageniform with an inflated posterior end, containing the polar tube coils and the nucleus, and a narrow anterior section comprising two-thirds of the length, containing the polaroplast and straight part of the polar tube. The polaroplast consisted of an anterior region of loosely packed membranes arranged as partitions at angles to one another and a posterior region of increasingly closely packed parallel membranes. The spore wall consisted of an electron-dense exospore with a fuzzy coat and a thin electron-lucent endospore. All four spores derived from a sporont faced in the same direction in the sporophorous vesicle. Spores measured 8.7 μm long and extruded polar filaments were about 20 μm.  相似文献   

14.
A new species of a microsporidium found in the freshwater teleost Gymnorhamphichthys rondoni, collected on the lower Amazon River, is described based on light, ultrastructural, and phylogenetic studies. This parasite develops in the skeletal muscle of the abdominal cavity, forming whitish cyst-like structures containing numerous spores. Mature spores, lightly pyriform to ellipsoidal with rounded ends and measuring 4.25 ± 0.38 × 2.37 ± 0.42 μm (n = 30), were observed. The spore wall, which measured about 102 nm, was composed of 2 layers with approximately the same thickness. The isofilar polar filament was coiled, with 9-10 (rarely 8) turns. The posterior vacuole appeared as a pale area, occupying about 1/3 of the spore length, and contained a spherical posterosome composed of granular material that was denser at the periphery. The myofibrils located near the spores appeared to be in advanced degradation. Molecular analysis of the rRNA genes, including the ITS region, and phylogenetic analyses using maximum parsimony, maximum likelihood, and Baysesian inference were performed. The ultrastructural characteristics of the spores and the phylogenetic data strongly suggested that it is a new species related to Kabatana, Microgemma, Potaspora, Spraguea, and Tetramicra. We named this new microsporidian from Amazonian fauna as Kabatana rondoni n. sp.  相似文献   

15.
Two species of Myxobolus are reported from the gills of Mugil cephalus collected at Goa, India: M. goensis n. sp. and M. parvus Shulman, 1962. Myxobolus goensis n. sp. forms digitiform or rounded plasmodia between the gill rakers. Their spores are oval in frontal view, with tapered anterior extremity, and lemon-shaped in lateral view, measuring 9.7 (9.5-10.5) microm in length, 6.6 (6-7.5) microm in width, and 5.2 (5-6) microm in thickness. The polar capsules are pyriform and unequal in size. The larger ones are 5.3 (4.5-6) microm long and 2.4 (2-3) microm wide; the smaller ones are 2.4 (2-3) microm long and 1.8 (1.5-2) microm wide. The polar filament forms five turns aligned perpendicularly to the longitudinal axis of the larger polar capsules. Within the smaller polar capsules the polar filament is difficult to observe and, apparently, forms three coils. The spores are distinctly different from other Myxobolus species infecting M. cephalus and other Mugil spp. Furthermore, the present material is also different from 204 Myxobolus species presenting differently sized polar capsules, representing nearly all the known species with this characteristic. The fact that only the M. cephalus specimens were infected among a sample of 206 fish specimens, comprising 27 different species, strongly suggests that this parasite is specific to M. cephalus.  相似文献   

16.
A new microsporidium is reported infesting the enterocytes of a Haitian patients with AIDS. The stages observed were diplokaryotic cells, sporogonial plasmodia, unikaryotic sporoblasts, and spores. Neither a sporophorous vesicle (pansporoblastic membrane) nor parasitophorous vacuole were differentiated around the developmental stages, which were in direct contact with the host cell cytoplasm. The polar tube (5-6 coils) was differentiated before fission of the sporogonial plasmodium. The mature spores measured 1.5 micron X 0.5 micron. The spore wall was very thin as the endospore was absent or poorly differentiated. The organism is named Enterocytozoon bieneusi n. g., n. sp. and is assigned to the suborder Apansporoblastina.  相似文献   

17.
A xenoma-inducing microsporidian species was found to infect the liver of the teleost fish, peacock wrasse Symphodus (Crenilabrus) tinca. Minimal estimates of the prevalence of the parasite in fishes caught along Tunisian coasts were as high as 43 % for Bizerte samples (over 2 yr) and 72% for Monastir samples (over 3 yr). Developmental stages were dispersed within a xenoma structure that was bounded only by the plasma membrane of the hypertrophic host cell. Ultrastructural features support allocation to the genus Microgemma Ralphs and Matthews, 1986. Meronts were multinucleate plasmodia and were surrounded by rough endoplasmic reticulum (RER) of the host cell. Merogonic plasmodia developed into sporogonic plasmodia, with loss of the RER interface. Sporogony was polysporoblastic. Ovocylindrical spores (3.6 x 1.2 microm) harbored a lamellar polaroplast and a polar tube that was coiled 9 times. Spore features and host specificity led us to propose a new species, Microgemma tincae. The conversion of M. tincae xenomas into well-visible cyst structures or granulomas reflected an efficient host response involving the infiltration of phagocytic cells, degradation of various parasite stages and formation of a thick fibrous wall. The small subunit rDNA gene of M. tincae was partially sequenced. Phylogenetic analysis confirms the placement within the family Tetramicriidae represented by the genera Tetramicra and Microgemma.  相似文献   

18.
Life cycle stages of a new species of the genus Nosema Naegeli, 1857 (Microspora, Nosematidae), were examined by light and electron microscopy. It parasitizes the gut and the uterus of the digenean Monorchis parvus (Monorchiidae), in Diplodus annularis (Pisces, Teleostei). All stages were in close contact with the cytoplasm of the host cell and were probably all diplokaryotic. The divisions of meronts and sporonts were recognizable by the formation of spindle plaques at the surface of the nucleus. Spores were oval, measured 3.2±0.3×2.5±0.2 μm on ultrathin sections, and had a polar filament with 16–17 coils. The polaroplast presented two parts: an anterior region with closely packed lamellae and a posterior part with wider lamellae. This Nosema species is compared with the other microsporidian parasites of digeneans. This new species is named Nosema monorchis n. sp., after the generic name of its host.  相似文献   

19.
A species of Amblyospora-infecting neurones of Culex pipiens is described. Diplokaryotic meronts, which divided by binary fission, were distinguished at the electron microscope level by their unthickened plasma membranes. Sporonts with an electron-dense surface coat gave rise to eight uninucleate sporoblasts within a sporophorous vesicle, cytoplasmic division occurring at the quadrinucleate or octonucleate stages. Indications that nuclear fusion and chromosome reorganization occurred in merogony and sporogony were obtained by light microscopy but meiosis was not detected at the ultrastructural level. Spores were typical of Amblyospora, being ovoid when fresh, truncate when stained, and having an exospore of two membranous layers subtended by a thick amorphous layer, an electron-lucent endospore, an anisofilar polar filament, and a polaroplast comprised of an anterior region of close-packed lamellae and a posterior region of expanded sacs. The metabolic products in the sporophorous vesicle took the form of large globules, small globules with electron-dense borders, and fine granules. These were depleted in mature sporophorous vesicles, though a surface layer of fine granules on the spores may have been derived from them. Many stages were degenerate and it is suggested that C. pipiens may be an accidental host in which the parasite could develop suboptimally in nervous tissue only. Infections in larvae hatched from eggs in the laboratory indicate that vertical transmission occurs.  相似文献   

20.
A new microsporidian species, Euplotespora binucleata n. gen., n. sp., from the brackish-water ciliate Euplotes woodruffi is described and defined on the basis of life history characteristics, light and electron microscopic features, and small subunit (SSU) ribosomal DNA (rDNA) sequencing. The life cycle of E. binucleata n. sp. probably has rather short merogonic and relatively long sporogonic phases. Some uninuclear meronts and sporonts, along with diplokaryotic sporoblasts and spores, were found in experimentally infected host cells. Such a peculiar life cycle has been induced experimentally in Euplotes eurystomus and constitutively microsporidian-free stocks of E. woodruffi. Spores of E. binucleata n. sp. are monomorphic, ovoid-cylindrical in shape, 3.44+/-0.17 x 1.65+/-0.22 microm in size, and characterized by a diplokaryotic condition and a large posterior vacuole. The polar tube is isofilar, 4.5-5.5 microm in length when ejected, and lacking a distinctive coiled region (half-coiled). The polaroplast is divided into two regions: the anterior part has a few lamellae close to the anchoring disc; and the posterior part is a rounded body (sack), about one-quarter of the spore length. Spores do not appear to cluster together as a group. Each spore is surrounded by a sporophorous membrane closely adjacent to the exospore layer. A phylogenetic analysis of SSU rDNA sequences by different methods placed E. binucleata n. sp. in a clade with representatives of the microsporidian genera Cystosporogenes and Vittaforma. Observations of microsporidia in several other ciliates are discussed in view of the microsporidian infection frequency in the phylum Ciliophora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号