首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugarcane cell cultures were obtained from callus formed on explants derived from young expanding leaves of two early maturing sugarcane varieties viz “CoJ83” and “CoJ86”. The cell cultures were varied with different arginine concentrations in the culture medium. For each cultivar, sucrose content with 20 μM arginine in the culture medium decreased from 3 to 5 days and then increased to 10 days after subculturing. Higher concentration of arginine in the culture medium (60 μM) decreased the sucrose content at different days after subculturing and thus significantly stimulated sucrose mobilization. The activity of sucrose synthase and sucrose phosphate synthase reached maximum while the activity of acid and neutral invertase was minimal in the culture medium with 20 μM arginine. Thus arginine at low concentration (20 μM) enables the cells to accumulate the higher level of sucrose. The optimum level of amino acids can be utilized to regulate the in vivo activity of sucrose synthase, sucrose phosphate synthase and invertase to achieve maximum sucrose accumulation in sugarcane storage tissue.  相似文献   

2.
Du  Yu-Chun  Nose  Akihiro 《Photosynthetica》2002,40(3):389-395
The effects of short-term exposure to chilling temperature (10 °C) on sucrose synthesis in leaves of the cold-tolerant sugarcane cultivars Saccharum sinense R. cv. Yomitanzan and Saccharum sp. cv. NiF4, and the cold-sensitive cultivar S. officinarum L. cv. Badila were studied. Plants were grown at day/night temperatures of 30/25 °C, and then shifted to a constant day/night temperature of 10 °C. After 52-h exposure to the chilling temperature, sucrose content in the leaves of NiF4 and Yomitanzan showed a 2.5- to 3.5-fold increase relative to that of the control plants that had been left on day/night temperatures of 30/25 °C. No such increase was observed in Badila leaves. Similarly, starch content in the leaves of NiF4 and Yomitanzan was maintained high, but starch was depleted in Badila leaves after the 52-h exposure. During the chilling temperature, sucrose phosphate synthase (SPS; E.C.2.4.1.14) activity was relatively stable in the leaves of NiF4 and Yomitanzan, whereas in Badila leaves SPS activity significantly decreased. There was no significant change in cytosolic fructose-1,6-bisphosphatase activity for the three cultivars at the chilling temperature. This supports the hypothesis that: (1) on exposure to chilling temperature, sucrose content in sugarcane leaves is determined by the photosynthetic rate in the leaves, and is not related to SPS activity; (2) SPS activity in sugarcane leaves at chilling temperature is to be determined by sugar concentration in the leaves.  相似文献   

3.
Raffinose Synthesis in Chlorella vulgaris Cultures after a Cold Shock   总被引:1,自引:1,他引:0  
Chlorella vulgaris cultures have been submitted to a chilling shock, bringing down the growing temperature from to 24°C to 4°C. Growth was stopped immediately, and concomitantly there was an accumulation of sucrose and a decrease in the starch content. The enzymes involved in sucrose metabolism were differentially affected by the chilling shock. Sucrose phosphate synthase activity increased while sucrose synthase was not affected. Simultaneously with the chilling shock, raffinose began to accumulate. When algal cultures were returned at 24°C, raffinose disappeared. The presence of raffinose in algal cells has not been reported before.  相似文献   

4.
Soybean (Glycine max L. [Merr] cv. Ransom II) seedlings were grown under a light/ dark regime or in continuous darkness. Cotyledons were harvested daily for measurements of reserve mobilization, net carbon exchange rate, chlorophyll content and activities of certain enzymes involved in sucrose metabolism. Seedlings lost dry weight for the first 3 to 4 days after planting, then maintained a constant dry weight in the etiolated seedlings, and gained dry weight (via net fixation of CO2) in the light-grown seedlings. In general, the patterns of reserve mobilization were as expected based on the collective work of other investigators. Soluble sugars were mobilized first, followed by protein and lipid. Galactinol, previously uncharacterized in soybean cotyledons, was present at low concentrations and was rapidly depleted within 2 days after planting. Mobilization of reserves was most important during the first 8 days after planting, whereas net cotyledonary photosynthesis began at 6 days after planting and was the primary source of assimilates after 8 days. Maximum rates of cotyledon photosynthesis were higher [up to 18 mg CO2 (g dry weight)?1 h?1] than previously reported and accounted for about 75% of the assimilates transported from the cotyledons to the growing seedling during the functional life of the cotyledon. Enzyme activities in light-grown cotyledons peaked 7 to 10 days after planting and then declined. Sucrose phosphate synthase (EC 2.4.1.14) and sucrose synthase (EC 2.4.1.13) activities were similar in etiolated and light-grown seedlings, whereas uridine-5′-di-phosphatase (EC 3.6.1.6) activity was substantially higher in light-grown seedlings. During the period of reserve mobilization, the maximum sucrose phosphate synthase activity in cotyledonary extracts was in excess of the calculated rate of sucrose formation. However, when the cotyledons had highest net photosynthetic rates (14 days after planting), sucrose phosphate synthase activity was similar to the rate of carbon assimilation. It appears that soybean cotyledons are adapted for high rates of sucrose formation (from reserve mobilization and/or photosynthesis) for export to the rapidly growing tissues of the seedling.  相似文献   

5.
Sucrose and fructan metabolism in wheat roots at chilling temperatures   总被引:3,自引:0,他引:3  
Sucrose and fructan metabolism were studied in wheat ( Triticuin aotiirum L. cv. Tribal 800) roots during a period at chilling temperature. Enzyme activities related to fructan and sucrose metabolism were measured. Sucrose-sucrose fructosyl transfer-ase (EC 2.4.1.99) activity increased more than 25-fold when plants were cooled to 4°C. Sucrose synthase (EC 2.4.1.13) and sucrose-phosphate synthase (EC 2.4.1.14) activities also increased, but low temperatures had no significant effect on invertaso (EC 3.2.1.26) or on fructan hydrolase (EC 3.2.1.26) activities. The accumulation pattern of fructan in roots was different to that in leaves. In roots chilling stimulated the synthesis of fructans of high degree of polymerization.  相似文献   

6.
The effects of chilling stress on leaf photosynthesis and sucrose metabolism were investigated in tomato plants (Lycopersicon esculentum Mill. cultivar Marmande). Twenty-one-day-old seedlings were grown in a growth chamber at 25/23 °C (day/night) (control) and at 10/8 °C (day/night) (chilled) for 7 days. The most evident effect of chilling was the marked reduction of plant growth and of CO2 assimilation as measured after 7 days, the latter being associated with a decrease in stomatal closure and an increase in Ci. The inhibition in photosynthetic rate was also related to an impairment of photochemistry of photosystem II (PSII), as seen from the slight, but significant change in the ratio of Fv/Fm. The capacity of chilled leaves to maintain higher qP values with respect to the controls suggests that some protection mechanism prevented excess reduction of PSII acceptors. The results of the determination of starch and soluble sugar content could show that chilling impaired sucrose translocation. The activity of leaf invertase increased significantly in chilled plants, while that of other sucrose-metabolizing enzymes was not affected by growing temperature. Furthermore, the increase in invertase (neutral and acid) activity, which is typical of senescent tissue characterized by reduced growth, seems to confirm that tomato is a plant which is not a plant genetically adapted to low temperatures.  相似文献   

7.
Four wheat ( Triticum aestivum L.) varieties cultivated in different climates from subtropics to North Patagonia were used to study sucrose and fructan metabolism in plants when submitted to a cold period. Higher levels of sugars were found in the more cold tolerant cultivars. Sucrose synthase (EC 2.4.1.13) and sucrose phosphate synthase (EC 2.4.1.14) activities showed a 2–3 fold increase when plants were grown at 4°C for 10 days. The more cold-tolerant wheat cultivars also showed the higher levels of enzyme activities. These metabolical changes were not due to anatomical or morphological differences produced during growth at 4°C  相似文献   

8.
Recent reports have suggested that sucrose phosphate synthase (EC 2.4.1.14), a key enzyme in sucrose biosynthesis in photosynthetic “source” tissues, may also be important in some sucrose accumulating “sink” tissues. These experiments were conducted to determine if sucrose phosphate synthase is involved in sucrose accumulation in fruits of several species. Peach (Prunus persica NCT 516) and strawberry (Fragaria x ananassa cv. Chandler) fruits were harvested directly from the plant at various stages of fruit development. Kiwi (Actinidia chinensis), papaya (Carica papaya), pineapple (Ananas comosus) and mango (Mangifera indica) were sampled in postharvest storage over a period of several days. Carbohydrate concentrations and activities of sucrose phosphate synthase, sucrose synthase (EC 2.4.1.13), and acid and neutral invertases (EC 3.2.1.26) were measured. All fruits contained significant activities of sucrose phosphate synthase. Moreover, in fruits from all species except pineapple and papaya, there was an increase in sucrose phosphate synthase activity associated with the accumulation of sucrose in situ. The increase in sucrose concentration in peaches was also associated with an increase in sucrose synthase activity and, in strawberries, with increased activity of both sucrose synthase and neutral invertase. The hexose pools in all fruits were comprised of equimolar concentrations of fructose and glucose, except in the mango. In mango, the fructose to glucose ratio increased from 2 to 41 during ripening as sucrose concentration more than doubled. The results of this study indicate that activities of the sucrose metabolizing enzymes, including sucrose phosphate synthase, within the fruit itself, are important in determining the soluble sugar content of fruits of many species. This appears to be true for fruits which sweeten from a starch reserve and in fruits from sorbitol translocating species, raffinose saccharide translocating species, and sucrose translocating species.  相似文献   

9.
Activities of acid and alkaline invertases and sucrose synthase were determined in roots and nodules of lentil at various stages of development. Alkaline invertase and sucrose synthase were both involved in sucrose metabolism in the nodule cytosol, but there was only a small amount of acid invertase present. Activity of sucrose metabolizing enzymes in roots was significantly less than that observed in the nodules. Amongst sugars, sucrose was found to be the main component in the host cytosol. Lentil neutral invertase (LNI) was partially purified from nodules at 50 days after sowing (DAS). Two forms of invertase were identified, i.e., a major form of 71 kDa which was taken for enzyme characterization and a minor form of 270 kDa which was not used for further studies. The purified enzyme exhibited typical hyperbolic saturation kinetics for sucrose hydrolysis. It had a Km of 11.0 to 14.0 mM for sucrose depending upon the temperature, a pH optimum of 6.8 and an optimum temperature of 40 °C. Compared with raffinose and stachyose, sucrose was better substrate for LNI. The enzyme showed no significant hydrolysis of maltose and p-nitrophenyl--D-glucopyranoside, showing its true -fructosidase nature. LNI is completely inhibited by HgCl2, MnCl2 and iodoacetamide but not by CaCl2, MgCl2 or BaCl2.  相似文献   

10.
Global warming leads to increasing irregular and unexpected warm spells during autumn, and therefore natural chilling requirements to break dormancy are at risk. Controlled cold treatment can provide an answer to this problem. Nevertheless, artificial cold treatment will have consequences for carbon reserves and photosynthesis. In this paper, the effect of dark cold storage at 7 °C to break flower bud dormancy in the evergreen Rhododendron simsii was quantified. Carbohydrate and starch content in leaves and flower buds of an early (‘Nordlicht’), semi‐early (‘M. Marie’) and late (‘Mw. G. Kint’) flowering cultivar showed that carbon loss due to respiration was lowest in ‘M. Marie’, while ‘Mw. G. Kint’ was completely depleted of starch reserves at the end of cold treatment. Gene isolation resulted in a candidate gene for sucrose synthase (SUS) RsSus, which appears to be homologous to AtSus3 and had a clear increase in expression in leaves during cold treatment. Photosynthesis measurements on ‘Nordlicht’ and the late‐flowering cultivar ‘Thesla’ showed that during cold treatment, dark respiration decreased 58% and 63%, respectively. Immediately after cold treatment, dark respiration increased and stabilised after 3 days. The light compensation point followed the same trend as dark respiration. Quantum efficiency showed no significant changes during the first days after cold treatment, but was significantly higher than in plants with dormant flower buds at the start of cold treatment. In conclusion, photosynthesis stabilised 3 days after cold treatment and was improved compared to the level before cold treatment.  相似文献   

11.
We examined variability in sucrose levels and metabolism in ripe fruits of wild and domestic Vaccinium species and in developing fruits of cultivated blueberry (V. ashei and V. corymbosum). The objective was to determine if sufficient variability for fruit sucrose accumulation was present in existing populations to warrant attempts to breed for high-sucrose fruit, which potentially would be less subject to bird predation. Threefold differences in fruit sucrose concentration were found among Vaccinium species, ranging from 19 to 24 mg (g fresh weight)?1 in V. stamineum and V. arboreum to approximately 7 mg (g fresh weight)?1 in cultivated blueberry (V. ashei and V. corymbosum) and V. darrowi. Hexose levels were similar among species, ranging from 90 to 110 mg (g fresh weight)–1, and glucose and fructose were present in equal amounts. Soluble acid invertase (EC 3.2.1.26) activity was negatively correlated with fruit sucrose concentration. There was no apparent correlation between fruit sugar concentration and either sucrose synthase (EC 2.4.1.13) or sucrose phosphate synthase (EC 2.4.1.14) activities, both of which were low for all species studied. Developmental increases in fruit sugar levels of cultivated blueberry followed a pattern similar to that observed in fruit fresh weight accumulation. Hexose concentrations ranged from 6 to 30 mg (g fresh weight)?1 during the first 60 days after anthesis. Between 60 days and fruit ripening (80 days), hexose levels rose from 30 to 80 mg (g fresh weight)?1. Sucrose was not detected in fruits until ripening, when low levels were found. Insoluble acid invertase activity was relatively high early in fruit development, decreasing as soluble acid invertase activity increased. Between 60 days and fruit ripening, soluble acid invertase activity increased from 3 to 55 μmol (g fresh weight)–1 h–1. Both sucrose synthase and sucrose phosphate synthase activities were low throughout development. The extent of sucrose accumulation in fruits and the degree of variability for this trait among Vaccinium species support the feasibility of developing high sucrose fruits, which would be a potentially valuable addition to current strategies of minimizing crop losses to birds.  相似文献   

12.
Carbohydrates and carbohydrate enzymes in developing cotton ovules   总被引:2,自引:0,他引:2  
Patterns of carbohydrates and carbohydrate enzymes were investigated in developing cotton ovules to establish which of these might be related to sink strength in developing bolls. Enzymatic analysis of extracted tissue indicated that beginning 1 week following anthesis, immature cotton seeds (Gossypium hirsutum L. cv. Coker 100A glandless) accumulated starch in the tissues which surround the embryo. Starting at 15 days post anthesis (DPA), this starch was depleted and starch simultaneously appeared in the embryo. Sucrose entering the tissues surrounding the embryo was rapidly degraded, apparently by sucrose synthase; the free hexose content of these tissues reached a peak at about 20 DPA. During the first few weeks of development these tissues contained substantial amounts of hexose but little sucrose; the reverse was true for cotton embryos. Embryo sucrose content rose sharply from the end of the first week until about 20 DPA; it then remained roughly constant during seed maturation. Galactinol synthase (EC 2.4.1.x) appeared in the embryos approximately 25 days after flowering. Subsequently, starch disappeared and the galactosides raffinose and stachyose appeared in the embryo. Except near maturity, sucrose synthase (EC 2.4.1.13) activity in the embryos predominated over that of both sucrose phosphate synthase (EC 2.4.1.14) and acid invertase (EC 3.2.1.26). Activities of the latter enzymes increased during the final stages of embryo maturation. The ratio of sucrose synthase to sucrose phosphate synthase was found to be high in young cotton embryos but the ratio reversed about 45 DPA, when developing ovules cease being assimilate sinks. Insoluble acid invertase was present in developing cotton embryos, but at very low activities; soluble acid invertase was present at significant activities only in nearly mature embryos. From these data it appears that sucrose synthase plays an important role in young cotton ovule carbohydrate partitioning and that sucrose phosphate synthase and the galactoside synthesizing enzymes assume the dominant roles in carbohydrate partitioning in nearly mature cotton seeds. Starch was found to be an important carbohydrate intermediate during the middle stages of cotton ovule development and raffinose and stachyose were found to be important carbohydrate pools in mature cotton seeds.  相似文献   

13.
14.
Phase Transition Temperature and Chilling Sensitivity of Bovine Oocytes   总被引:1,自引:0,他引:1  
A limiting factor for achieving cryopreservation of oocytes is direct chilling injury (DCI), which occurs during cooling. DCI, or cold shock, is defined as an irreversible damage expressed shortly after exposure to low, but not freezing, temperatures. The primary target of DCI is thought to be the plasma membrane. Recently, an association between DCI in sperm and the thermotropic phase transition of their membrane lipids was demonstrated. In the present study, we examined the phase transition of the membrane lipids of immature andin vitro-matured bovine oocytes during cooling, using Fourier transform infrared spectroscopy (FTIR). The phase transition of the membrane lipids of oocytes at the germinal vesicle (GV) stage occurred between 13 and 20°C, while a very broad phase transition, which centered around 10°C, was observed for mature oocytes (MII) stage. Thermotropic phase transitions were demonstrated to be related to the temperature at which DCI affected the integrity of the oocyte membranes. When immature oocytes were cooled to 13°C, fewer oocytes (40%) retained their membrane integrity than after exposure to 4°C (51%) or holding them at 38°C (78%), (as determined by the Fluorescein Diacetate-FDA test). This finding might suggest that holding immature oocytes at the phase transition temperature is more damaging to their membranes than exposure to lower temperatures. By contrast, no significant differences in membrane integrity were observed whenin vitro-matured oocytes were cooled to the same temperatures. Subsequently, GV oocytes were cooled to 4°C, and 26% underwent maturation and 19% underwent fertilizationin vitro. In vitro-matured oocytes that were cooled to 4°C displayed a slightly decreased rate of fertilization; the overall fertilization was 60% with 24% polyspermy, rather than the 76% fertilization rate with 12% polyspermy obtained with those not subjected to cooling. The high rate of polyspermy indicates that a site(s) other than the plasma membrane is affected during cooling of bovine oocytes. Nucleated bovine GV oocytes were electrofused within vitro-matured and enucleated oocytes, and then cooled to 4°C. Evaluation of the membrane integrity of the fused oocytes showed that these oocytes are chilling resistant, which strongly suggests that alteration of the membrane composition of an oocyte can change the cell's susceptibility to low temperatures. This finding led to an improvement in the survival of oocytes after cryopreservation.  相似文献   

15.
16.
Sucrose Synthase Expression during Cold Acclimation in Wheat   总被引:11,自引:4,他引:7       下载免费PDF全文
When wheat (Triticum aestivum) seedlings are exposed to a cold temperature (2-4°C) above 0°C, sucrose accumulates and sucrose synthase activity increases. The effect of a cold period on the level of sucrose synthase (SS) was investigated. Using antibodies against wheat germ SS, Western blots studies showed that the amount of the SS peptide increased during 14 days in the cold, when plants were moved from 23°C to 4°C. The level of SS diminished when plants were moved back to 23°C. Northern blots of poly(A)+ RNA, confirmed a five- to sixfold induction of SS in wheat leaves during cold acclimation. These results indicate that SS is involved in the plant response to a chilling stress.  相似文献   

17.
Changes in the sucrose metabolism of Cur-cuma longa L. plants were studied under treatment with different triazole compounds viz., triadimefon (TDM) and propiconazole (PCZ). Plants were treated with TDM at 15 mg/L and PCZ at 10 mg/L separately by soil drenching on 80, 110, and 140 days after planting (DAP). The plants were harvested randomly on 90, 120, and 150DAP to determine the effect of both the triazoles on sucrose metabolizing enzymes and phenol content. The sucrose metabolism was studied by analyzing sucrose metaboliz-ing enzymes like sucrose synthase and sucrose phosphate synthase. All the analyses were assayed in leaves and tubers of both control and treated plants. It was found that both of the triazole compounds had profound effects on these parameters.  相似文献   

18.
The potential subcellular consequence of chilling on porcine germinal vesicle (GV) stage oocytes was examined. Prior to in vitro maturation (IVM), Cumulus-oocyte complexes (COCs) freshly collected from antral follicles (3–6 mm in diameter) were evenly divided into four groups and immediately incubated in PVA-TL-HEPES medium at the temperature of 39 °C (control group), 23 °C (room temperature), 15 °C and 10 °C for 10 min, respectively. Following 42 h of IVM at 39 °C, the survival rates were examined. There was no significant difference between the survival rate of 23 °C chilled group and control group (77.92 and 91.89%), but the survival rate of 15 and 10 °C chilled group were significantly decreased (46.34 and 4.81%, P < 0.01). A further experiment on15 °C group showed that most oocytes died from 2 to 4 h of IVM. In order to investigate the effects of chilling on oocytes at the subcellular level, the control and 15 °C chilled group COCs fixed at different time points of the IVM cultures (2, 2.5, 3, 3.5 and 4 h of IVM) were prepared for transmission electron microscope (TEM) observation. As the result, compared with the control group, there were two significant changes in the ultrastructural morphology of 15 °C treatment group: (1) dramatic reduction of heterogeneous lipid, (2) disorganized mitochondria–endoplasmic reticulum–lipid vesicles (M–E–L) combination. These results indicate that 15 °C is a critical chilling temperature for porcine GV stage oocyte and the alteration of cellular chemical composition and the destruction of M–E–L combination maybe responsible for chilling injury of porcine oocyte at this stage.  相似文献   

19.
Low temperature represents one of the principal limitations in species distribution and crop productivity. Responses to chilling include the accumulation of simple carbohydrates and changes in enzymes involved in their metabolism. Soluble carbohydrate levels and invertase, sucrose synthase (SS), sucrose-6-phosphate synthase (SPS) and alpha-amylase activities were analysed in cotyledons and embryonic axes of quinoa seedlings grown at 5 degrees C and 25 degrees C in the dark. Significant differences in enzyme activities and carbohydrate levels were observed. Sucrose content in cotyledons was found to be similar in both treatments, while in embryonic axes there were differences. Invertase activity was the most sensitive to temperature in both organs; however, SS and SPS activities appear to be less stress-sensitive. Results suggest that 1) metabolism in germinating perispermic seeds would be different from endospermic seeds, 2) sucrose futile cycles would be operating in cotyledons, but not in embryonic axes of quinoa seedlings under our experimental conditions, 3) low temperature might induce different regulatory mechanisms on invertase, SS and SPS enzymes in both cotyledons and embryonic axes of quinoa seedlings, and 4) low temperature rather than water uptake would be mainly responsible for the changes observed in carbohydrate and related enzyme activities.  相似文献   

20.
Sucrose Metabolism in Lupinus albus L. Under Salt Stress   总被引:3,自引:0,他引:3  
Salt stress (50 and 150 mM NaCl) effects on sucrose metabolism was determined in Lupinus albus L. Sucrose synthase (SS) activity increased under salt stress and sucrose phosphate synthase activity decreased. Acid invertase activity was higher at 50 mM NaCl and decreased to control levels at 150 mM NaCl. Alkaline invertase activity increased with the salt stress. Glucose content decreased with salt stress, sucrose content was almost three times higher in plants treated with 150 mM NaCl and fructose content did not change significantly. The most significant response of lupin plants to NaCl excess is the increase of sucrose content in leaves, which is partially due to SS activity increase under salinity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号