首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the response of rat PC12 cells and a derivative PC18 cell line to the effects of adenosine receptor agonists, antagonists, and adenine nucleotide metabolizing enzymes. We found that theophylline (an adenosine receptor antagonist), adenosine deaminase, and AMP deaminase all decreased basal cyclic AMP content and tyrosine hydroxylase activity in the PC12 cells, but not in PC18 cells. Both cell lines responded to the addition of 2-chloroadenosine and 5'-N-ethylcarboxamidoadenosine, adenosine receptor agonists, by exhibiting an increase in tyrosine hydroxylase activity and cyclic AMP content. The latter finding indicates that both cell lines contained an adenosine receptor linked to adenylate cyclase. We found that the addition of dipyridamole, an inhibitor of adenosine uptake, produced an elevation of cyclic AMP and tyrosine hydroxylase activity in both cell lines. Deoxycoformycin, an inhibitor of adenosine deaminase, failed to alter the levels of cyclic AMP or tyrosine hydroxylase activity. This suggests that uptake was the primary inactivating mechanism of adenosine action in these cells. We conclude that both cell types generated adenine nucleotides which activate the adenosine receptor in an autocrine or paracrine fashion. We found that PC12 cells released ATP in a calcium-dependent process in response to activation of the nicotinic receptor. We also measured the rates of degradation of exogenous ATP, ADP, and AMP by PC12 cells. We found that the rates of metabolism of the former two were at least an order of magnitude greater than that of AMP. Any released ATP would be rapidly metabolized to AMP and then more slowly degraded to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Abstract: Tyrosine hydroxylase activity is reversibly modulated by the actions of a number of protein kinases and phosphoprotein phosphatases. A previous report from this laboratory showed that low-molecular-weight substances present in striatal extracts lead to an irreversible loss of tyrosine hydroxylase activity under cyclic AMP-dependent phosphorylation conditions. We report here that ascorbate is one agent that inactivates striatal tyrosine hydroxylase activity with an EC50 of 5.9 μM under phosphorylating conditions. Much higher concentrations (100 mM) fail to inactivate the enzyme under nonphosphorylating conditions. Isoascorbate (EC50, 11 μM) and dehydroascorbate (EC50, 970 μM) also inactivated tyrosine hydroxylase under phosphorylating but not under nonphosphorylating conditions. In contrast, ascorbate sulfate was inactive under phosphorylating conditions at concentrations up to 100 mM. Since the reduced compounds generate several reactive species in the presence of oxygen, the possible protecting effects of catalase, peroxidase, and superoxide dismutase were examined. None of these three enzymes, however, afforded any protection against inactivation. We also examined the effects of ascorbate and its congeners on the activity of tyrosine hydroxylase purified to near homogeneity from a rat pheochromocytoma. This purified enzyme was also inactivated by the same agents that inactivated the impure corpus striatal enzyme. Under conditions in which ascorbate almost completely abolished enzyme activity, we found no indication for significant prote-olysis of the purified enzyme as determined by sodium do-decyl sulfate-polyacrylamide gel electrophoresis. We also found that pretreatment of PC12 cells in culture for 4 h with 1 mM ascorbate, dehydroascorbate, or isoascorbate (but not ascorbate sulfate) also decreased tyrosine hydroxylase activity 25–50%. The inactivation seen under in vitro conditions appears to have a counterpart under more physiological conditions.  相似文献   

3.
Abstract: The relationship between elevations in intracellular free Ca2+ concentration ([Ca2+]i) by different mechanisms and tyrosine hydroxylase (TH) gene expression was examined. Depolarization by an elevated K+ concentration triggered rapid and sustained increases in [Ca2+]i from a basal level of ~50 to 110–150 nM and three- to fourfold elevations in TH mRNA levels, requiring extracellular calcium but not inositol 1,4,5-trisphosphate (IP3). On the other hand, bradykinin or thapsigargin, both of which induce release of intracellular calcium stores via IP3 or inhibition of Ca2+-ATPase, rapidly elevated [Ca2+]i to >200 nM and increased TH gene expression (three-to fivefold). Confocal imaging showed that the elevations in [Ca2+]i in each case occurred throughout the cyto- and nucleoplasm. The initial rise in [Ca2+]i due to either bradykinin or thapsigargin, which did not require extracellular calcium, was sufficient to initiate the events leading to increased TH expression. Consistent with this, the effects of bradykinin on TH expression were inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid or 3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester which chelates or inhibits the release of intracellular calcium, respectively. Bradykinin required a rise in [Ca2+]i for <10 min, as opposed to 10–30 min for depolarization to increase TH mRNA levels. These results demonstrate that although each of these treatments increased TH gene expression by raising [Ca2+]i, there are important differences among them in terms of the magnitude of elevated [Ca2+]i, requirements for extracellular calcium or release of intracellular calcium stores, and duration of elevated [Ca2+]i, indicating the involvement of different calcium signaling pathways leading to regulation of TH gene expression.  相似文献   

4.
5.
Rapid Activation of Tyrosine Hydroxylase in Response to Nerve Growth Factor   总被引:7,自引:3,他引:7  
Abstract: Nerve growth factor protein (NGF) was found to rapidly promote the activation of tyrosine hydroxylase in cultured rat PC 12 pheochromocytoma cells. PC 12 cultures were exposed to NGF for periods of less than 1 h and the soluble contents of homogenates prepared from the cells were assayed for tyrosine hydroxylase activity. Under these conditions, the specific enzymatic activity was increased by 60 ± 10% (n = 13) in comparison with that in untreated sister cultures. The increase was half maximal by 2–5 min of exposure and at NGF concentrations of about 10 ng/ml (0.36 n M ). Antiserum against NGF blocked the effect. Tyrosine hydroxylase activity could also be rapidly increased by NGF in cultures of PC12 cells that had been treated with the factor for several weeks in order to produce a neuron-like phenotype. This was achieved by withdrawing NGF for about 4 h and then readding it for 30 min. The NGF-induced increase of tyrosine hydroxylase activity in PC12 cultures was not affected by inhibition of protein synthesis and therefore appeared to be due to activation of the enzyme. Kinetic experiments revealed that NGF brought about no change in the apparent Km of the enzyme for tyrosine or for co-factor (6-methyltetrahydropteridine), but that it did significantly increase the apparent maximum specific activity of the enzyme. These observations suggest that NGF (perhaps released by target organs) could promote a rapid and local enhancement of noradrenergic transmission in the sympathetic nervous system.  相似文献   

6.
Abstract: Incubation of rat pheochromocytoma PC12 cells with 4β-phorbol-12β-myristate-13α-acetate (PMA), an activator of Ca2+/phospholipid-dependent protein kinase (protein kinase C), or forskolin, an activator of adenylate cyclase, is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase. Neither the activation nor increased phosphorylation of tyrosine hydroxylase produced by PMA is dependent on extracellular Ca2+. Both activation and phosphorylation of the enzyme by PMA are inhibited by pretreatment of the cells with trifluo-perazine (TFP). Treatment of PC 12 cells with l-oleoyl-2-acetylglycerol also leads to increases in the phosphorylation and enzymatic activity of tyrosine hydroxylase; 1, 2-diolein and 1, 3-diolein are ineffective. The effects of forskolin on the activation and phosphorylation of the enzyme are independent of Ca2+ and are not inhibited by TIT5. Forskolin elicits an increase in cyclic AMP levels in PC 12 cells. The increases in both cyclic AMP content and the enzymatic activity and phosphorylation of tyrosine hydroxylase following exposure of PC 12 cells to different concentrations of forskolin are closely correlated. In contrast, cyclic AMP levels do not increase in cells treated with PMA. Tryptic digestion of the phosphorylated enzyme isolated from untreated cells yields four phosphopeptides separable by HPLC. Incubation of the cells in the presence of the Ca2+ ionophore ionomycin increases the phosphorylation of three of these tryptic peptides. However, in cells treated with either PMA or forskolin, there is an increase in the phosphorylation of only one of these peptides derived from tyrosine hydroxylase. The peptide phosphorylated in PMA-treated cells is different from that phosphorylated in forskolin-treated cells. The latter peptide is identical to the peptide phosphorylated in dibutyryl cyclic AMP-treated cells. These results indicate that tyrosine hydroxylase is activated and phosphorylated on different sites in PC 12 cells exposed to PMA and forskolin and that phosphorylation of either of these sites is associated with activation of tyrosine hydroxylase. The results further suggest that cyclic AMP-dependent and Ca2+/ phospholipid-dependent protein kinases may play a role in the regulation of tyrosine hydroxylase in PC 12 cells.  相似文献   

7.
We have identified a 56-kilodalton protein in cultured bovine adrenal chromaffin cells that is phosphorylated when catecholamine secretion is stimulated. Immunodetection on Western blots from both one- and two-dimensional polyacrylamide gels indicated that this protein was tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis. Two-dimensional polyacrylamide gel electrophoresis of proteins from unstimulated cells revealed small amounts of phosphorylated protein with a molecular weight of 56K and pI values of 6.37 and 6.27 which were subunits of tyrosine hydroxylase. Nicotinic stimulation of chromaffin cells caused the phosphorylation of three proteins of 56 kilodaltons with pI values of approximately 6.37, 6.27, and 6.15 which were tyrosine hydroxylase. The immunochemical analysis also revealed that there was unphosphorylated tyrosine hydroxylase 56 kilodaltons with a pI of 6.5 which may have decreased on nicotinic stimulation. The phosphorylation of tyrosine hydroxylase was associated with an increase in in situ conversion of [3H]tyrosine to [3H]dihydroxyphenylalanine ([3H]DOPA). Muscarinic stimulation also caused phosphorylation of tyrosine hydroxylase, but to a smaller extent than did nicotinic stimulation. The secretagogues, elevated K+ and Ba2+, stimulated phosphorylation of tyrosine hydroxylase and [3H]DOPA production. The effects of nicotinic stimulation and elevated K+ on tyrosine hydroxylase phosphorylation and [3H]DOPA production were Ca2+-dependent. Nicotinic agonists also raised cyclic AMP levels in chromaffin cells after 2 min. Dibutyryl cyclic AMP and forskolin, which have little effect on catecholamine secretion, also caused phosphorylation of tyrosine hydroxylase. These stimulators of cyclic AMP-dependent processes caused the appearance of two phosphorylated subunits of tyrosine hydroxylase with pI values of 6.37 and 6.27. There was also a small amount of phosphorylated subunit with a pI of 6.15. Both agents stimulated [3H]DOPA production. The experiments indicate that tyrosine hydroxylase is phosphorylated and activated when chromaffin cells are stimulated to secrete. The data suggest that the earliest phosphorylation of tyrosine hydroxylase induced by a nicotinic agonist occurs through stimulation of a Ca2+-dependent protein kinase. After 2 min phosphorylation by a cyclic AMP-dependent protein kinase may also occur. Phosphorylation of tyrosine hydroxylase is associated with an increase in in situ tyrosine hydroxylase activity.  相似文献   

8.
9.
Abstract: Tyrosine hydroxylase (TH) activity is increased two- to threefold in neuroblastoma cell line NBP2 maintained in culture for 48 h in the presence of either the inhibitor of cyclic AMP-phosphodiesterase (PDE), 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (RO 20- 1724), or the activator of adenylate cyclase, prostaglandin E1 (PGE1). Cyclic AMP levels are elevated 70–80% and 30–40% throughout the 48-h treatment with RO 20-1724 and PGE1, respectively. Carbachol does not affect either basal TH activity or cyclic AMP levels in the cells. However, the cholinergic agonist delays the induction of TH elicited by either RO 20-1724 or PGE1. This delay is prevented by atropine. The elevation in cyclic AMP levels elicited by either RO 20-1724 or PGE1 is blocked for 1 h or 15 min. respectively, after treatment with carbachol. Cyclic AMP levels then begin to rise until they reach those levels observed in the presence of RO 20-1724 or PGE1 alone by 12 h or 1 h of treatment, respectively. Time course studies demonstrate that this transient inhibition of the elevation of cyclic AMP is associated with a 48-h delay in the induction of TH elicited by either RO 20-1724 or PGE1. In contrast, the induction elicited by 8-bromo cyclic AMP is unaffected by carbachol. A depolarizing concentration (56 mM) of KCl produces a 24-h delay in the induction of TH elicited by RO 20-1724, without affecting the concomitant elevation of cyclic AMP produced by the PDE inhibitor. Furthermore, 56 mM-KCl inhibits the induction of TH elicited by 8-bromo cyclic AMP. It thus appears that carbachol delays the induction of TH by transiently inhibiting the elevation of cyclic AMP, whereas potassium depolarization delays the induction of TH by inhibiting a process with a site of action that is distal to the elevation of cyclic AMP.  相似文献   

10.
11.
Abstract: We investigated the receptor mechanisms by which vasoactive intestinal polypeptide (VIP) and related peptides exert their effects on tyrosine hydroxylase (TH) gene expression. VIP, secretin, and peptide histidine isoleucine (PHI) each produced increases in TH gene expression, as measured by increases in TH mRNA levels and TH activity. The concentrations at which the effects of these peptides were maximal differed for TH activity and TH mRNA. Moreover, maximal increases in TH activity were 130-140% of control, whereas maximal increases in TH mRNA were 250% of control. The concentration dependence of the increases in TH mRNA in response to the three peptides was analyzed by fitting the data to nonlinear regression models that assume either one or two components to the response. The data for secretin fit best to a model that assumes a single component to the increase in TH mRNA levels. The data derived for PHI and VIP fit best to models that assumed two components to the TH mRNA response. These data suggested that there may be more than one receptor or signal transduction mechanism involved in the response to the various peptides. We examined whether the peptides exerted their effects through common or multiple second messenger systems. The ability of maximally active concentrations of these peptides to stimulate increases in TH mRNA was not additive, indicating that the peptides work through a common receptor or signal transduction pathway. Each peptide stimulated increases in protein kinase A (PKA) activity. Secretin and VIP were ineffective in increasing TH mRNA levels in a PKA-deficient mutant PC12 cell line (A 126-1B2). Moreover, the adenylate cyclase antagonist 2′,5′-dideoxyadenosine prevented the increase in TH mRNA produced by each peptide. Thus, each peptide requires an intact cyclic AMP second messenger pathway to produce changes in TH gene expression, suggesting that the complex pattern of response to VIP and PHI revealed by concentration-response analysis was due to the actions of these peptides at multiple receptors. To evaluate this possibility, we examined the effect of several peptide receptor antagonists on the increase in TH gene expression elicited by VIP, PHI, and secretin. The secretin antagonist secretin (5–27) (20 μM) had no significant effect on VIP or PHI stimulation of TH gene expression, but reduced the effect of secretin. The VIP antagonist VIP (10–28) (20 μM) reduced the effect of VIP on increasing TH mRNA, but had no significant effect on the response of TH mRNA to secretin or PHI. Interestingly, the VIP antagonist [Ac-Tyr1,D-Phe2]-growth hormone releasing factor [GRF(1–29)] amide (20 μM) potentiated the effect of VIP on elevating TH mRNA levels, but had no effect on secretin-stimulated TH mRNA induction. To determine whether this response was mediated through the cyclic AMP pathway, we examined the effects of the VIP antagonist [Ac-Tyr1,D-Phe2]-GRF(1–29) amide on VIP stimulation of PKA activity. Although the antagonist had no effect alone, it enhanced stimulation of PKA activity by VIP. Taken together, these findings indicate that VIP and secretin stimulate TH mRNA through different adenylate cyclase-linked receptors and that a second VIP receptor may modulate TH induction by inhibiting VIP stimulation of PKA.  相似文献   

12.
Incubation of rat pheochromocytoma PC12 cells with dibutyryl cyclic AMP or 56 mM K+ is associated with increased activity and enhanced phosphorylation of tyrosine hydroxylase in situ. Following incubation of the PC12 cells with 32Pi, rapid isolation of the tyrosine hydroxylase, and tryptic digestion of the enzyme, two distinct 32P-peptides can be identified after paper electrophoresis. 56 mM K+ increases 32Pi incorporation into both of these peptides, whereas dibutyryl cyclic AMP increases 32Pi incorporation into only one of these peptides. The rate of increase in the incorporation of 32Pi into these two peptides in cells treated with 56 mM K+ is similar. The phosphorylation of tyrosine hydroxylase in PC12 cells occurs exclusively on serine residues. These results suggest that tyrosine hydroxylase in PC12 cells is phosphorylated on serine residues at two or more distinct sites after 56 mM K+ -induced depolarization. Since only one of these sites is phosphorylated by cyclic AMP-dependent protein kinase, activation of tyrosine hydroxylase by 56 mM K+ may involve phosphorylation by multiple protein kinases in rat pheochromocytoma PC12 cells.  相似文献   

13.
Abstract: Although cyclic AMP (cAMP) has been reported to cross talk with the protein kinase C (PKC) system, effects of elevated intracellular cAMP on the activities of specific PKC isoforms have not been studied. We report findings from a permeabilized cell assay that was used to examine changes in the activity of the atypical PKC isoforms brought about by exposure of PC12 cells to agents that elevate intracellular cAMP. We found that increases in intracellular cAMP led to rapid stimulation of atypical PKC activity, 40–70% above control, for a sustained period of time, a response that occurred independent of the phorbol 12-myristate 13-acetate (PMA)-sensitive PKC isoforms. Changes in intracellular cAMP levels resulted in a dose-dependent redistribution of ζ-PKC to the cytoplasm with a concomitant increase in the phosphorylation state of the enzyme. Incubation of purified ζ-PKC with increasing concentrations of PKA likewise caused a twofold increase in the phosphorylation state of ζ-PKC. In contrast to the positive effect that PKA-mediated phosphorylation had on the activity of ζ-PKC, the enzyme displayed reduced binding to ras when phosphorylated. Taken together, these findings are consistent with the hypothesis that protein phosphorylation of PKC acts as a positive effector of its enzyme activity and may serve as a negative modulator for interaction with other proteins.  相似文献   

14.
Abstract: Forskolin has been used to stimulate adenylyl cyclase. However, we found that forskolin inhibited voltage-sensitive Ca2+ channels (VSCCs) in a cyclic AMP (cAMP)-independent manner in PC12 cells. Ca2+ influx induced by membrane depolarization with 70 m M K+ was inhibited when cells were preincubated with 10 µ M forskolin. Almost maximum inhibitory effect on Ca2+ influx without any significant increase in cellular cAMP level was observed in PC12 cells exposed to forskolin for 1 min. In addition, the forskolin effect on Ca2+ influx was not affected by the presence of 2',5'-dideoxyadenosine, an inhibitor of adenylyl cyclase that reduces dramatically forskolin-induced cAMP production. 1,9-Dideoxyforskolin, an inactive analogue of forskolin, also inhibited ∼80% of Ca2+ influx induced by 70 m M K+ without any increase in cAMP. The data suggest that forskolin and its analogue inhibit VSCCs in PC12 cells and that the inhibition is independent of cAMP generation.  相似文献   

15.
Abstract: In this study, the interaction between 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) in [3H]adenine-or [3H]-guanine-prelabelled adult guinea-pig cerebellar slices was investigated. Basal levels of [3H]cGMP were enhanced by forskolin, although no plateau was reached over the concentration range tested (0.1-100 μM). However, forskolin elicited a concentration-dependent, saturable potentiation of sodium nitroprusside (SNP)-stimulated [3H]cGMP accumulation (forskolin EC50 value of 0.98 β 0.23 μM; 10 μM forskolin produced a 1.8 β 0.3-fold potentiation of the SNP response at 2.5 min). The forskolin potentiation was observed at all concentrations of SNP tested (0.001-10 mM). forskolin also elicited a large stimulation of [3H]-cAMP in [3H]adenine-prelabelled guinea-pig cerebellar slices; however, 1,9-dideoxyforskolin failed to elicit either a [3H]cAMP response or a potentiation of the SNP-induced [3H]cGMP response at concentrations up to 100 μM. Pretreatment with oxyhaemoglobin (50 μM) inhibited the response to SNP (1 mM) and forskolin (10 μM), as well as the response evoked by the combination of SNP and forskolih. AG-Nitro-l -arginine (100 μM) inhibited the response to forskolin alone, but did not change the response to SNP or the potentiation induced by forskolin on SNP-induced [3H]cGMP levels. The protein kinase inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7; 100 μM), staurosporine (10 μM), polymyxin B (100 μM), and Ro 31-8220 (10 μM) had no effect on the [3H]cGMP response to either SNP or the combination of SNP plus forskolin. N6,2′-Dibutyryl cAMP, at concentrations up to 10 mM, was also without effect on [3H]cGMP levels induced by SNP. 3-lso-butyl-1-methylxanthine reproduced the effect of forskolin on SNP-induced [3H]cGMP levels, but a less-than-additive effect was observed when the response to SNP was studied in the presence of forskolin and 3-isobutyl-1-methylxanthine. Taken together, these results infer that crosstalk between cyclic nucleotides takes place in guinea-pig cerebellar slices, and that cAMP may regulate cGMP-mediated responses in this tissue.  相似文献   

16.
Abstract: Glucocorticoids modulate signal transduction mechanisms in a number of cell systems. As the adrenal medulla is exposed to relatively high levels of adrenal cortical glucocorticoids in vivo, particularly during periods of stress, the aim of the present study was to determine whether glucocorticoids modulate cyclic AMP (cAMP) metabolism in an in vitro model of this system, the PC18 cell line. Dexamethasone significantly potentiated cAMP accumulation in response to the adenosine analogue N 6- R -phenylisopropyl adenosine (PIA), and in response to forskolin. This effect was both time- and concentration-dependent. Maximal potentiation was observed after 48 h of exposure to 1 µ M dexamethasone. Corticosterone and to a lesser extent aldosterone also significantly potentiated PIA-dependent cAMP accumulation. In contrast, estradiol, testosterone, and triiodothyronine had no potentiative effect. Potentiation could be eliminated by coincubation with the protein synthesis inhibitor cycloheximide. In the presence of Ro 20-1724, a cAMP-phosphodiesterase inhibitor, the degree of potentiation of both PIA- and forskolin-dependent cAMP accumulation was significantly decreased by 50–60%. These data suggested that altered cAMP-phosphodiesterase activity may be involved in this response. However, cytosolic and membrane-bound low K m cAMP-phosphodiesterase activity was unchanged in dexamethasone-treated cells compared with controls. Similarly, there were no significant differences in basal, PIA-, forskolin-, or GTPγS-stimulated adenylate cyclase activities between groups. These studies indicate that glucocorticoids can potentiate cAMP accumulation in intact PC18 cells. The mechanism underlying this potentiation is likely to be multifactorial, but may be due in part to decreased cAMP catabolism.  相似文献   

17.
Cyclic AMP and glucocorticoids appear to have a role in regulating the activity of tyrosine hydroxylase (TH), as well as the expression of "morphological differentiation" in murine neuroblastoma. Monolayer cultures of C-1300 murine neuroblastoma (clone NBP2) were treated with the following compounds in ethanol: dexamethasone, triamcinolone acetonide, hydrocortisone, cortexolone, androstenedione, testosterone, estradiol-17 beta; or with the phosphodiesterase inhibitor Ro20-1724 [4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone]. Treatment with either 200 micrograms/ml Ro20-1724 or 50 micrograms/ml dexamethasone produced significant increases in TH activity compared to alcohol controls (1.44 vs. 0.82 nmol 14CO2/mg protein/hr compared to 0.095). Triamcinolone acetonide or hydrocortisone also produced smaller, but significant, increases in TH activity compared to dexamethasone. When steroid activities were compared at 25 microM concentration and after 60 min of incubation (to maximize TH activity), triamcinolone acetonide was not as effective (62%) as dexamethasone. The relatively inactive glucocorticoid cortexolone produced a slight but significant increase, while the androgens androstenedione and testosterone and the estrogen estradiol-17 beta were without effect.  相似文献   

18.
Abstract: Nerve growth factor (NGF) and dibutyryl cyclic AMP (dbcAMP) have synergistic effects on the neurite outgrowth of rat pheochromocytoma PC12 cells. The sites of interaction between NGF and dbcAMP have been studied extensively; however, the role of Ca2+ in differentiation induced by the two agents remains unclear. To understand whether intracellular Ca2+ is involved in the differentiation induced by the two agents, PC12 cells were treated with NGF, dbcAMP, or NGF plus dbcAMP for 2 days, and then effects on neurite outgrowth, ATP-induced Ca2+ influx, and Ca2+ mobilization from intracellular Ca2+ pools were examined. NGF or dbcAMP alone enhanced neurite outgrowth and Ca2+ accumulation by nonmitochondrial Ca2+ pools or the thapsigargin (TG)-sensitive Ca2+ pool. The dbcAMP acted synergistically with NGF to increase neurite outgrowth and to enlarge the TG-sensitive Ca2+ pool. The synergistic effect occurred within the first hour of treatment with dbcAMP plus NGF. On the other hand, dbcAMP abolished NGF's ability to enhance ATP-induced influx of extracellular Ca2+. Therefore, NGF and dbcAMP induced different effects on Ca2+ signaling pathways through two different but interacting pathways. In PC12 cells pretreated with TG to deplete the TG-sensitive Ca2+ pool, the dbcAMP- or dbcAMP plus NGF-mediated neurite outgrowth was significantly inhibited, whereas NGF-mediated neurite outgrowth was not affected by TG pretreatment. Our results suggest that the intracellular nonmitochondrial Ca2+ pools were changed in the differentiation process and were necessary for the synergistic effect of NGF and dbcAMP.  相似文献   

19.
Abstract: PC12h cells can be differentiated into sympathetic neuron-like cells by various agents, including nerve growth factor, basic fibroblast growth factor, cyclic AMP analogues, and protein kinase C (PKC) activators. To study the involvement of PKC in the process of PC12h cell differentiation by cyclic AMP treatment, PKC isozymes (α, βI, βII, and γ) were analyzed using column chromatography and immunoblotting. Two PKC isozymes, PKC(α) and PKC(βII), were predominantly detected in PC12h cells. When stimulated by dibutyryl cyclic AMP, PKC(α) levels declined in the cytosolic fraction of the cells, whereas PKC(βII) levels increased. Increased PKC(βII) levels were also detected in the particulate fraction, whereas particulate PKC(α) levels did not change. The total PKC activity decreased in the cytosolic fraction following cyclic AMP stimulation of PC12h cells, whereas it stayed constant in the particulate fraction. Fractionation on a hydroxyapatite column showed a decreased level of PKC(α) activity and a transient increase followed by a decreased level of PKC(βII) activity. This discrepancy between increased PKC(βII) immunoreactivity and reduced PKC(βII) activity suggested the presence of nonactivatable PKC(βII) in cyclic AMP-treated PC12h extract. These findings indicate that PKC(α) and PKC(βII) are differentially regulated during the differentiation of PC12h cells. In addition, the differentiation of PC12h cells triggered by cyclic AMP seems to involve characteristic alterations of PKC isozymes.  相似文献   

20.
Tyrosine hydroxylase purified from rat pheochromocytoma was phosphorylated and activated by purified cyclic GMP-dependent protein kinase as well as by cyclic AMP-dependent protein kinase catalytic subunit. The extent of activation was correlated with the degree of phosphate incorporated into the enzyme. Comparable stoichiometric ratios (0.6 mol phosphate/mol tyrosine hydroxylase subunit) were obtained at maximal concentrations of either cyclic AMP-dependent or cyclic GMP-dependent protein kinases. The enzymes appeared to mediate the phosphorylation of the same residue based on the observation that incorporation was not increased when both enzymes were present. The major tryptic phosphopeptide obtained from tyrosine hydroxylase phosphorylated by each protein kinase exhibited an identical retention time following HPLC. The purified phosphopeptides also exhibited identical isoelectric points. These data provide support for the notion that the protein kinases are phosphorylating the same residue of tyrosine hydroxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号