首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CCR5 is a functional receptor for various inflammatory CC-chemokines, including macrophage inflammatory protein (MIP)-1alpha and RANTES (regulated on activation normal T cell expressed and secreted), and is the main coreceptor of human immunodeficiency viruses. The second extracellular loop and amino-terminal domain of CCR5 are critical for chemokine binding, whereas the transmembrane helix bundle is involved in receptor activation. Chemokine domains and residues important for CCR5 binding and/or activation have also been identified. However, the precise way by which chemokines interact with and activate CCR5 is presently unknown. In this study, we have compared the binding and functional properties of chemokine variants onto wild-type CCR5 and CCR5 point mutants. Several mutations in CCR5 extracellular domains (E172A, R168A, K191A, and D276A) strongly affected MIP-1alpha binding but had little effect on RANTES binding. However, a MIP/RANTES chimera, containing the MIP-1alpha N terminus and the RANTES core, bound to these mutants with an affinity similar to that of RANTES. Several CCR5 mutants affecting transmembrane helices 2 and 3 (L104F, L104F/F109H/F112Y, F85L/L104F) reduced the potency of MIP-1alpha by 10-100 fold with little effect on activation by RANTES. However, the MIP/RANTES chimera activated these mutants with a potency similar to that of MIP-1alpha. In contrast, LD78beta, a natural MIP-1alpha variant, which, like RANTES, contains a proline at position 2, activated these mutants as well as RANTES. Altogether, these results suggest that the core domains of MIP-1alpha and RANTES bind distinct residues in CCR5 extracellular domains, whereas the N terminus of chemokines mediates receptor activation by interacting with the transmembrane helix bundle.  相似文献   

2.
Molecular analysis of CCR5, the cardinal coreceptor for HIV-1 infection, has implicated the N-terminal extracellular domain (N-ter) and regions vicinal to the second extracellular loop (ECL2) in this activity. It was shown that residues in the N-ter are necessary for binding of the physiologic ligands, RANTES (CCL5) and MIP-1 alpha (CCL3). vMIP-II, encoded by the Kaposi's sarcoma-associated herpesvirus, is a high affinity CCR5 antagonist, but lacks efficacy as a coreceptor inhibitor. Therefore, we compared the mechanism for engagement by vMIP-II of CCR5 to its interaction with physiologic ligands. RANTES, MIP-1 alpha, and vMIP-II bound CCR5 at high affinity, but demonstrated partial cross-competition. Characterization of 15 CCR5 alanine scanning mutants of charged extracellular amino acids revealed that alteration of acidic residues in the distal N-ter abrogated binding of RANTES, MIP-1 alpha, and vMIP-II. Whereas mutation of residues in ECL2 of CCR5 dramatically reduced the binding of RANTES and MIP-1 alpha and their ability to induce signaling, interaction with vMIP-II was not altered by any mutation in the exoloops of the receptor. Paradoxically, monoclonal antibodies to N-ter epitopes did not block chemokine binding, but those mapped to ECL2 were effective inhibitors. A CCR5 chimera with the distal N-ter residues of CXCR2 bound MIP-1 alpha and vMIP-II with an affinity similar to that of the wild-type receptor. Engagement of CCR5 by vMIP-II, but not RANTES or MIP-1 alpha blocked the binding of monoclonal antibodies to the receptor, providing additional evidence for a distinct mechanism for viral chemokine binding. Analysis of the coreceptor activity of randomly generated mouse-human CCR5 chimeras implicated residues in ECL2 between H173 and V197 in this function. RANTES, but not vMIP-II blocked CCR5 M-tropic coreceptor activity in the fusion assay. The insensitivity of vMIP-II binding to mutations in ECL2 provides a potential rationale to its inefficiency as an antagonist of CCR5 coreceptor activity. These findings suggest that the molecular anatomy of CCR5 binding plays a critical role in antagonism of coreceptor activity.  相似文献   

3.
The chemokine RANTES (regulated upon activation, normal T-cell expressed and secreted) is a natural ligand of CCR5, one of the major HIV-1 coreceptors. It is secreted as part of the immune response to human immunodeficiency virus 1 (HIV-1) and inhibits infection by CCR5-dependent (R5) HIV-1 isolates. We have investigated the interaction of RANTES with several peptides derived from the extracellular domains of CCR5 by heteronuclear NMR spectroscopy in aqueous solution. We show that a peptide comprising the first 25 amino acid residues of the CCR5 N-terminal domain and sulfated at the Y10 and Y14 side-chains binds with micromolar affinity exclusively to the monomeric form of RANTES. In contrast to the tight binding of the sulfated peptide, the affinity of the same peptide in non-sulfated form was reduced by more than two orders of magnitude. Peptides derived from the CCR5 extracellular loops ECL1, ECL2 and ECL3 showed only very moderate and mostly non-specific binding. Chemical shift mapping of the interaction of the sulfated N-terminal peptide reveals a contiguous binding surface on RANTES, which comprises amino acid residues of the first beta-strand, the N-loop, the fourth beta-strand and the turns around residues 30 and 40. This binding surface largely overlaps with the dimer interface and is strongly positively charged, providing a rationale for the exclusive binding of the monomer to the peptide and the requirement of the negative sulfate groups at the Y10 and Y14 side-chains. The binding surface also largely overlaps with the segments that were identified previously as crucial for HIV blockade by peptide scanning and mutagenesis studies. These data offer new insights into the structure-function relation of the RANTES-CCR5 interaction and may be helpful for the design of novel HIV-1 inhibitors.  相似文献   

4.
The G-protein coupled receptor CCR5 functions pathologically as the primary co-receptor for macrophage tropic (R5) strains of HIV-1. The interactions responsible for co-receptor activity are unknown. Molecular-dynamics simulations of the extracellular and adjacent transmembrane domains of CCR5 were performed with explicit solvation utilizing a rhodopsin-based homology model. The functional unit of co-receptor binding was constructed via docking and molecular-dynamics simulation of CCR5 and the variable 3 loop of gp120, which is a dominant determinant of co-receptor utilization. The variable 3 loop was demonstrated to interact primarily with the amino terminus and the second extracellular loop of CCR5, providing novel structural information regarding the co-receptor-binding site. Alanine mutants that alter chemokine binding and co-receptor activity were examined. Molecular-dynamics simulations with and without the variable 3 loop of gp120 were able to rationalize the activities of these mutants successfully, providing support for the proposed model. Based on these results, the global complex of CCR5, gp120 including the V3 loop and CD4, was investigated. The utilization of computational analysis, in combination with molecular biological data, provides a powerful approach for understanding the use of CCR5 as a co-receptor by HIV-1.  相似文献   

5.
We have characterized the structural and molecular interactions of CC-chemokine receptor 5 (CCR5) with three CCR5 inhibitors active against R5 human immunodeficiency virus type 1 (HIV-1) including the potent in vitro and in vivo CCR5 inhibitor aplaviroc (AVC). The data obtained with saturation binding assays and structural analyses delineated the key interactions responsible for the binding of CCR5 inhibitors with CCR5 and illustrated that their binding site is located in a predominantly lipophilic pocket in the interface of extracellular loops and within the upper transmembrane (TM) domain of CCR5. Mutations in the CCR5 binding sites of AVC decreased gp120 binding to CCR5 and the susceptibility to HIV-1 infection, although mutations in TM4 and TM5 that also decreased gp120 binding and HIV-1 infectivity had less effects on the binding of CC-chemokines, suggesting that CCR5 inhibition targeting appropriate regions might render the inhibition highly HIV-1-specific while preserving the CC chemokine-CCR5 interactions. The present data delineating residue by residue interactions of CCR5 with CCR5 inhibitors should not only help design more potent and more HIV-1-specific CCR5 inhibitors, but also give new insights into the dynamics of CC-chemokine-CCR5 interactions and the mechanisms of CCR5 involvement in the process of cellular entry of HIV-1.  相似文献   

6.
Binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp120 to the CCR5 co-receptor reduces constraints on the metastable transmembrane subunit gp41, thereby enabling gp41 refolding, fusion of viral and cellular membranes, and infection. We previously isolated adapted HIV-1JRCSF variants that more efficiently use mutant CCR5s, including CCR5(Δ18) lacking the important tyrosine sulfate-containing amino terminus. Effects of mutant CCR5 concentrations on HIV-1 infectivities were highly cooperative, implying that several may be required. However, because wild-type CCR5 efficiently mediates infections at trace concentrations that were difficult to measure accurately, analyses of its cooperativity were not feasible. New HIV-1JRCSF variants efficiently use CCR5(HHMH), a chimera containing murine extracellular loop 2. The adapted virus induces large syncytia in cells containing either wild-type or mutant CCR5s and has multiple gp120 mutations that occurred independently in CCR5(Δ18)-adapted virus. Accordingly, these variants interchangeably use CCR5(HHMH) or CCR5(Δ18). Additional analyses strongly support a novel energetic model for allosteric proteins, implying that the adaptive mutations reduce quaternary constraints holding gp41, thus lowering the activation energy barrier for membrane fusion without affecting bonds to specific CCR5 sites. In accordance with this mechanism, highly adapted HIV-1s require only one associated CCR5(HHMH), whereas poorly adapted viruses require several. However, because they are allosteric ensembles, complexes with additional co-receptors fuse more rapidly and efficiently than minimal ones. Similarly, wild-type HIV-1JRCSF is highly adapted to wild-type CCR5 and minimally requires one. The adaptive mutations cause resistances to diverse entry inhibitors and cluster appropriately in the gp120 trimer interface overlying gp41. We conclude that membrane fusion complexes are allosteric machines with an ensemble of compositions, and that HIV-1 adapts to entry limitations by gp120 mutations that reduce its allosteric hold on gp41. These results provide an important foundation for understanding the mechanisms that control membrane fusion and HIV-1's facile adaptability.  相似文献   

7.
CCR5 is a functional receptor for MIP-1alpha, MIP-1beta, RANTES (regulated on activation normal T cell expressed), MCP-2, and MCP-4 and constitutes the main coreceptor for macrophage tropic human and simian immunodeficiency viruses. By using CCR5-CCR2b chimeras, we have shown previously that the second extracellular loop of CCR5 is the major determinant for chemokine binding specificity, whereas the amino-terminal domain plays a major role for human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus coreceptor function. In the present work, by using a panel of truncation and alanine-scanning mutants, we investigated the role of specific residues in the CCR5 amino-terminal domain for chemokine binding, functional response to chemokines, HIV-1 gp120 binding, and coreceptor function. Truncation of the amino-terminal domain resulted in a progressive decrease of the binding affinity for chemokines, which correlated with a similar drop in functional responsiveness. Mutants lacking residues 2-13 exhibited fairly weak responses to high concentrations (500 nM) of RANTES or MIP-1beta. Truncated mutants also exhibited a reduction in the binding affinity for R5 Env proteins and coreceptor activity. Deletion of 4 or 12 residues resulted in a 50 or 80% decrease in coreceptor function, respectively. Alanine-scanning mutagenesis identified several charged and aromatic residues (Asp-2, Tyr-3, Tyr-10, Asp-11, and Glu-18) that played an important role in both chemokine and Env high affinity binding. The overlapping binding site of chemokines and gp120 on the CCR5 amino terminus, as well as the involvement of these residues in the epitopes of monoclonal antibodies, suggests that these regions are particularly exposed at the receptor surface.  相似文献   

8.
趋化因子受体 CCR5 亲合短肽的筛选   总被引:4,自引:0,他引:4  
趋化因子受体 5 (CCR5) 是 HIV-1 与宿主细胞结合的辅助因子之一,其功能缺失或被 CCR5 拮抗剂封闭则会阻止 HIV-1 感染细胞 . 为得到与 CCR5 特异结合的肽类拮抗剂,采用噬菌体展示技术,以稳定表达 CCR5 的 CHO 细胞 (CHO/CCR5) 作为靶标,通过噬菌体随机 12 肽库筛选与 CCR5 特异结合的多肽;经过四轮筛选后,挑选 20 个阳性噬菌体克隆进行测序,从中得到 11 个含有 AFDWTFVPSLIL 序列的小分子肽 . 含该序列的噬菌体能与抗人 CCR5 单抗 (2D7) 竞争性结合 CCR5 ,且合成肽 AFDWTFVPSLIL 对趋化因子 RANTES 与 CHO/CCR5 的结合具有明显的抑制作用,初步证明该小肽与 CCR5 具有特异性结合作用 .  相似文献   

9.
HIV-1 Nef is a key factor for pathogenesis and is known to down-regulate functionally important molecules, including viral entry co-receptor CCR5 and CXCR4, from the surface of HIV-infected cells. Some of these Nef activities are mediated by the well-conserved proline-rich region of Nef, and this region is highly targeted by cytotoxic T lymphocytes (CTLs). In the present study, we asked whether Nef variants selected under CTL-mediated selective pressure in vivo may constrain these important Nef activities. The analysis of autologous nef sequences isolated from a cohort of total 235 subjects in Japan revealed that the subjects showing amino acid variations, such as Arg75Thr and Tyr85Phe, located within the proline-rich region were significantly over-represented by those having HLA-B*3501. CTL assays corroborated that these mutations conferred escape from HLA-B(?)3501-restricted CTLs. The Arg75Thr variant Nef selectively impaired CCR5, but not CXCR4, down-regulation activity from the cell surface; whereas the Tyr85Phe variant Nef affected neither CCR5 nor CXCR4 down-regulation activity. Moreover, the cells expressing the Arg75Thr variant Nef significantly impaired protection from superinfection by CCR5-tropic, but not CXCR4-tropic, viruses. These results highlighted the importance of certain Nef-specific CTLs in modulation of viral co-receptor down-regulation activity and protection from HIV-1 superinfection, providing us with additional insight into vaccine design.  相似文献   

10.
CCR5 is the major HIV-1 entry coreceptor. RANTES/CCL5 analogs are more potent inhibitors of infection than native chemokines; one class activates and internalizes CCR5, one neither activates nor internalizes, and a third partially internalizes without activation. Here we show that mutations in CCR5 transmembrane domains differentially impact the activity of these three inhibitor classes, suggesting that the transmembrane region of CCR5, a key interaction site for inhibitors, is a sensitive molecular switch, modulating receptor activity.  相似文献   

11.
Kang Y  Wu Z  Lau TC  Lu X  Liu L  Cheung AK  Tan Z  Ng J  Liang J  Wang H  Li S  Zheng B  Li B  Chen L  Chen Z 《The Journal of biological chemistry》2012,287(20):16499-16509
Regardless of the route of transmission, R5-tropic HIV-1 predominates early in infection, rendering C-C chemokine receptor type 5 (CCR5) antagonists as attractive agents not only for antiretroviral therapy but also for prevention. Here, we report the specificity, potency, and underlying mechanism of action of a novel small molecule CCR5 antagonist, TD-0680. TD-0680 displayed the greatest potency against a diverse group of R5-tropic HIV-1 and SIV strains when compared with its prodrug, TD-0232, the Food and Drug Administration-approved CCR5 antagonist Maraviroc, and TAK-779, with EC(50) values in the subnanomolar range (0.09-2.29 nm). Importantly, TD-0680 was equally potent at blocking envelope-mediated cell-cell fusion and cell-mediated viral transmission as well as the replication of a TAK-779/Maraviroc-resistant HIV-1 variant. Interestingly, TD-0232 and TD-0680 functioned differently despite binding to a similar transmembrane pocket of CCR5. Site-directed mutagenesis, drug combination, and antibody blocking assays identified a novel mechanism of action of TD-0680. In addition to binding to the transmembrane pocket, the unique exo configuration of this molecule protrudes and sterically blocks access to the extracellular loop 2 (ECL2) region of CCR5, thereby interrupting the interaction between virus and its co-receptor more effectively. This mechanism of action was supported by the observations of similar TD-0680 potency against CD4-dependent and -independent SIV strains and by molecular docking analysis using a CCR5 model. TD-0680, therefore, merits development as an anti-HIV-1 agent for therapeutic purposes and/or as a topical microbicide for the prevention of sexual transmission of R5-tropic HIV-1.  相似文献   

12.
CCR5 (CC-chemokine receptor 5) is a key co-receptor, in concert with CD4, for infectivity of HIV-1 (human immunodeficiency virus type-1) into healthy human cells, and RANTES, an endogenous ligandfor CCR5, is a potent inhibitor of HIV-1 infectivity. In this structure-activity relationship (SAR) study, peptide fragments derived from RANTES were designed, synthesized and evaluated fortheir ability to inhibit HIV-1 infectivity. The goal was to determine the effect of peptide length on anti-HIV activity and to obtain an optimally sized RANTES peptide probe for further SAR studies. The analogue Ac[Ala10,11]RANTES-(1–14)NH2, AA14, was identified as an effective inhibitor of HIV-1 infectivity at 10 nM but despite the functional activity, surprisingly it did not exhibit any notable affinity for the CCR5 chemokine receptor. Further, increasing peptide size enhanced neither the inhibition of HIV-1 infectivity nor CCR5 receptor affinity. As a potent inhibitor of HIV-1 infectivity,the lead analogue most likely utilizes a different (and currentlyunknown) mechanism than interaction with CCR5 for anti-HIV activity.  相似文献   

13.
CC-chemokine receptor 5 (CCR5) is the principal coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). We have generated a set of anti-CCR5 monoclonal antibodies and characterized them in terms of epitope recognition, competition with chemokine binding, receptor activation and trafficking, and coreceptor activity. MC-4, MC-5, and MC-7 mapped to the amino-terminal domain, MC-1 to the second extracellular loop, and MC-6 to a conformational epitope covering multiple extracellular domains. MC-1 and MC-6 inhibited regulated on activation normal T cell expressed and secreted (RANTES), macrophage inflammatory polypeptide-1beta, and Env binding, whereas MC-5 inhibited macrophage inflammatory polypeptide-1beta and Env but not RANTES binding. MC-6 induced signaling in different functional assays, suggesting that this monoclonal antibody stabilizes an active conformation of CCR5. Flow cytometry and real-time confocal microscopy showed that MC-1 promoted strong CCR5 endocytosis. MC-1 but not its monovalent isoforms induced an increase in the transfer of energy between CCR5 molecules. Also, its monovalent isoforms bound efficiently, but did not internalize the receptor. In contrast, MC-4 did not prevent RANTES binding or subsequent signaling, but inhibited its ability to promote CCR5 internalization. These results suggest the existence of multiple active conformations of CCR5 and indicate that CCR5 oligomers are involved in an internalization process that is distinct from that induced by the receptor's agonists.  相似文献   

14.
C-C chemokine receptor 5 (CCR5), a member of G-protein-coupled receptors, serves as a coreceptor for human immunodeficiency virus type 1 (HIV-1). In the present study, we examined the interactions between CCR5 and novel CCR5 inhibitors containing the spirodiketopiperazine scaffolds AK530 and AK317, both of which were lodged in the hydrophobic cavity located between the upper transmembrane domain and the second extracellular loop (ECL2) of CCR5. Although substantial differences existed between the two inhibitors—AK530 had 10-fold-greater CCR5-binding affinity (Kd = 1.4 nM) than AK317 (16.7 nM)—their antiviral potencies were virtually identical (IC50 = 2.1 nM and 1.5 nM, respectively). Molecular dynamics simulations for unbound CCR5 showed hydrogen bond interactions among transmembrane residues Y108, E283, and Y251, which were crucial for HIV-1-gp120/sCD4 complex binding and HIV-1 fusion. Indeed, AK530 and AK317, when bound to CCR5, disrupted these interhelix hydrogen bond interactions, a salient molecular mechanism enabling allosteric inhibition. Mutagenesis and structural analysis showed that ECL2 consists of a part of the hydrophobic cavity for both inhibitors, although AK317 is more tightly engaged with ECL2 than AK530, explaining their similar anti-HIV-1 potencies despite the difference in Kd values. We also found that amino acid residues in the β-hairpin structural motif of ECL2 are critical for HIV-1-elicited fusion and binding of the spirodiketopiperazine-based inhibitors to CCR5. The direct ECL2-engaging property of the inhibitors likely produces an ECL2 conformation, which HIV-1 gp120 cannot bind to, but also prohibits HIV-1 from utilizing the “inhibitor-bound” CCR5 for cellular entry—a mechanism of HIV-1's resistance to CCR5 inhibitors. The data should not only help delineate the dynamics of CCR5 following inhibitor binding but also aid in designing CCR5 inhibitors that are more potent against HIV-1 and prevent or delay the emergence of resistant HIV-1 variants.  相似文献   

15.
Summary CCR5 (CC-chemokine receptor 5) is a key co-receptor, in concert with CD4, for infectivity of HIV-1 (human immunodeficiency virus type-1) into healthy human cells, and RANTES, an endogenous ligand for CCR5, is a potent inhibitor of HIV-1 infectivity. In this structure-activity relationship (SAR) study, peptide fragments derived from RANTES were designed, synthesized and evaluated for their ability to inhibit HIV-1 infectivity. The goal was to determine the effect of peptide length on anti-HIV activity and to obtain an optimally sized RANTES peptide probe for further SAR studies. The analogue Ac[Ala10,11]RANTES-(1–14)NH2, AA14, was identified as an effective inhibitor of HIV-1 infectivity at 10 nM but despite the functional activity, surprisingly it did not exhibit any notable affinity for the CCR5 chemokine receptor. Further, increasing peptide size enhanced neither the inhibition of HIV-1 infectivity nor CCR5 receptor affinity. As a potent inhibitor of HIV-1 infectivity, the lead analogue most likely utilizes a different (and currently unknown) mechanism than interaction with CCR5 for anti-HIV activity.  相似文献   

16.
The G-protein coupled receptor CCR5 is the main co-receptor for macrophage-tropic HIV-1 strains. I have built a structural model of the chemokine receptor CCR5 and used it to explain the binding and selectivity of the antagonist TAK779. Models of the extracellular (EC) domains of CCR5 have been constructed and used to rationalize current biological data on the binding of HIV-1 and chemokines. Residues spanning the transmembrane region of CCR5 have been modeled after rhodopsin, and their functional significance examined using the evolutionary trace method. The receptor cavity shares six residues with CC-chemokine receptors CCR1 through CCR4, while seven residues are unique to CCR5. The contribution of these residues to ligand binding and selectivity is tested by molecular docking simulations of TAK779 to CCR1, CCR2, and CCR5. TAK779 binds to CCR5 in the cavity formed by helices 1, 2, 3, and 7 with additional interactions with helices 5 and 6. TAK779 did not dock to either CCR1 or CCR2. The results are consistent with current site-directed mutagenesis data and with the observed selectivity of TAK779 for CCR5 over CCR1 and CCR2. The specific residues responsible for the observed selectivity are identified. The four EC regions of CCR5 have been modeled using constrained simulated annealing simulations. Applied dihedral angle constraints are representative of the secondary structure propensities of these regions. Tertiary interactions, in the form of distance constraints, are generated from available epitope mapping data. Analysis of the 250 simulated structures provides new insights to the design of experiments aimed at determining residue-residue contacts across the EC domains and for mapping CC-chemokines on the surface of the EC domains.  相似文献   

17.
To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1alpha-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1alpha (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat-beta-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1beta (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1alpha. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1alpha, MIP-1beta, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors.  相似文献   

18.
To identify sites in gp120 that interact with the CCR5 coreceptor and to analyze the mechanisms of infection, we selected variants of the CCR5-dependent JRCSF molecular clone of human immunodeficiency virus type 1 (HIV-1) that adapted to replicate in HeLa-CD4 cells that express the mutant coreceptor CCR5(Y14N) or CCR5(G163R), which were previously shown to bind purified gp120-CD4 complexes only weakly. Correspondingly, these mutant CCR5s mediate infections of wild-type virus only at relatively high cell surface concentrations, demonstrating a concentration-dependent assembly requirement for infection. The plots of viral infectivity versus concentration of coreceptors had sigmoidal shapes, implying involvement of multiple coreceptors, with an estimated stoichiometry of four to six CCR5s in the active complexes. All of the adapted viruses had mutations in the V3 loops of their gp120s. The titers of recombinant HIV-1 virions with these V3 mutations were determined in previously described panels of HeLa-CD4 cell clones that express discrete amounts of CCR5(Y14N) or CCR5(G163R). The V3 loop mutations did not alter viral utilization of wild-type CCR5, but they specifically enhanced utilization of the mutant CCR5s by two distinct mechanisms. Several mutant envelope glycoproteins were highly fusogenic in syncytium assays, and these all increased the efficiency of infection of the CCR5(Y14N) or CCR5(G163R) clonal panels without enhancing virus adsorption onto the cells or viral affinity for the coreceptor. In contrast, V3 loop mutation N300Y was selected during virus replication in cells that contained only a trace of CCR5(Y14N) and this mutation increased the apparent affinity of the virus for this coreceptor, as indicated by a shift in the sigmoid-shaped infectivity curve toward lower concentrations. Surprisingly, N300Y increased viral affinity for the second extracellular loop of CCR5(Y14N) rather than for the mutated amino terminus. Indeed, the resulting virus was able to use a mutant CCR5 that lacks 16 amino acids at its amino terminus, a region previously considered essential for CCR5 coreceptor function. Our results demonstrate that the role of CCR5 in infection involves at least two steps that can be strongly and differentially altered by mutations in either CCR5 or the V3 loop of gp120: a concentration-dependent binding step that assembles a critical multivalent virus-coreceptor complex and a postassembly step that likely involves a structural rearrangement of the complex. The postassembly step can severely limit HIV-1 infections and is not an automatic consequence of virus-coreceptor binding, as was previously assumed. These results have important implications for our understanding of the mechanism of HIV-1 infection and the factors that may select for fusogenic gp120 variants during AIDS progression.  相似文献   

19.
CCR5, a receptor for the CC chemokines RANTES, Mip1alpha, and Mip1beta, has been identified as a coreceptor for infections by macrophage-tropic isolates of human immunodeficiency virus type 1 (HIV-1). To study its structure and function, we isolated cDNA clones of human, African green monkey (AGM), and NIH/Swiss mouse CCR5s, and we quantitatively analyzed infections by macrophage-tropic HIV-1 and SIVmac251 after transfecting human HeLa-CD4 cells with the CCR5 expression vectors. The AGM and NIH/Swiss mouse CCR5 proteins are 97.7 to 98.3% and 79.8% identical to the human protein, respectively. In addition, we analyzed site-directed mutants and chimeras of these CCR5s. Cell surface expression of CCR5 proteins was monitored by using a specific rabbit antiserum and by binding the chemokine [125I]Mip1beta. Our major results were as follows. (i) Two distinct AGM CCR5 sequences were reproducibly found in DNA from CV-1 cells. The AGM clone 1 CCR5 protein differs from that of clone 2 by two substitutions, Y14N in the amino-terminal extracellular region and L352F at the carboxyl terminus. Interestingly, AGM clone 1 CCR5 was inactive as a coreceptor for all tested macrophage-tropic isolates of HIV-1, whereas AGM clone 2 CCR5 was active. As shown by chimera studies and site-directed mutagenesis, the Y14N substitution in AGM clone 1 CCR5 was solely responsible for blocking HIV-1 infections. In contrast, both AGM CCR5 clones were active coreceptors for SIVmac251. Studies of DNA samples from other AGMs indicated frequent additional CCR5 polymorphisms, and we cloned an AGM clone 2 variant with a Q93R substitution in the extracellular loop 1 from one heterozygote. This variant CCR5 was active as a coreceptor for SIVmac251 but was only weakly active for macrophage-tropic isolates of HIV-1. In addition, SIVmac251 appeared to be dependent on the extracellular amino terminus and loop 2 regions of human CCR5 for maximal infection. Our results suggest major differences in the interactions of SIVmac251 and macrophage-tropic HIV-1 isolates with 19, N13, and Y14 in the amino terminus; with Q93 in extracellular loop 1; and with extracellular loop 2 of human CCR5. (ii) The NIH/Swiss mouse CCR5 protein differs at multiple positions from sequences recently reported for other inbred strains of mice. This CCR5 was inactive as a coreceptor for HIV-1 and SIVmac251. Studies of chimeras that contained different portions of NIH/Swiss mouse CCR5 substituted into human CCR5, as well as the reciprocal chimeras, indicated that the amino-terminal region and extracellular loops 1 and 2 of human CCR5 contribute to its coreceptor activity for macrophage-tropic isolates of HIV-1. Specific differences with previous CCR5 chimera results occurred because the NIH/Swiss mouse CCR5 contains a unique substitution corresponding to P183L in extracellular loop 2 that is nonpermissive for coreceptor activity. We conclude that diverse CCR5 sequences occur in AGMs and mice, that SIVmac251 and macrophage-tropic HIV-1 isolates interact differently with specific CCR5 amino acids, and that multiple regions of human CCR5 contribute to its coreceptor functions. In addition, we have identified naturally occurring amino acid polymorphisms in three extracellular regions of CCR5 (Y14N, Q93R, and P183L) that do not interfere with cell surface expression or Mip1beta binding but prevent infections by macrophage-tropic isolates of HIV-1. In contrast to previous evidence, these results suggest that CCR5 contains critical sites that are essential for HIV-1 infections.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) entry is mediated by the consecutive interaction of the envelope glycoprotein gp120 with CD4 and a coreceptor such as CCR5 or CXCR4. The CCR5 coreceptor is used by the most commonly transmitted HIV-1 strains that often persist throughout the course of infection. Compounds targeting CCR5-mediated entry are a novel class of drugs being developed to treat HIV-1 infection. In this study, we have identified the mechanism of action of two inhibitors of CCR5 function, SCH-350581 (AD101) and SCH-351125 (SCH-C). AD101 is more potent than SCH-C at inhibiting HIV-1 replication in primary lymphocytes, as well as viral entry and gp120 binding to cell lines. Both molecules also block the binding of several anti-CCR5 monoclonal antibodies that recognize epitopes in the second extracellular loop of CCR5. Alanine mutagenesis of the transmembrane domain of CCR5 suggests that AD101 and SCH-C bind to overlapping but nonidentical sites within a putative ligand-binding cavity formed by transmembrane helices 1, 2, 3, and 7. We propose that the binding of small molecules to the transmembrane domain of CCR5 may disrupt the conformation of its extracellular domain, thereby inhibiting ligand binding to CCR5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号