首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During locomotion, mammalian limb postures are influenced by many factors including the animal's limb length and body mass. Polk (2002) compared the gait of similar-sized cercopithecine monkeys that differed limb proportions and found that longer-limbed monkeys usually adopt more extended joint postures than shorter-limbed monkeys in order to moderate their joint moments. Studies of primates as well as non-primate mammals that vary in body mass have demonstrated that larger animals use more extended limb postures than smaller animals. Such extended postures in larger animals increase the extensor muscle mechanical advantage and allow postures to be maintained with relatively less muscular effort (Polk, 2002; Biewener 1989). The results of these previous studies are used here to address two anthropological questions. The first concerns the postural effects of body mass and limb proportion differences between australopithecines and members of the genus Homo. That is, H. erectus and later hominins all have larger body mass and longer legs than australopithecines, and these anatomical differences suggest that Homo probably used more extended postures and probably required relatively less muscular force to resist gravity than the smaller and shorter-limbed australopithecines. The second question investigates how animals with similar size but different limb proportions differ in locomotor performance. The effects of limb proportions on gait are relevant to inferring postural and locomotor differences between Neanderthals and modern Homo sapiens which differ in their crural indices and relative limb length. This study demonstrates that primates with relatively long limbs achieve higher walking speeds while using lower stride frequencies and lower angular excursions than shorter-limbed monkeys, and these kinematic differences may allow longer-limbed taxa to locomote more efficiently than shorter-limbed species of similar mass. Such differences may also have characterized the gait of Homo sapiens in comparison to Neanderthals, but more experimental data on humans that vary in limb proportions are necessary in order to evaluate this question more thoroughly.  相似文献   

2.
Previous studies have differed in expectations about whether long limbs should increase or decrease the energetic cost of locomotion. It has recently been shown that relatively longer lower limbs (relative to body mass) reduce the energetic cost of human walking. Here we report on whether a relationship exists between limb length and cost of human running. Subjects whose measured lower-limb lengths were relatively long or short for their mass (as judged by deviations from predicted values based on a regression of lower-limb length on body mass) were selected. Eighteen human subjects rested in a seated position and ran on a treadmill at 2.68 ms(-1) while their expired gases were collected and analyzed; stride length was determined from videotapes. We found significant negative relationships between relative lower-limb length and two measures of cost. The partial correlation between net cost of transport and lower-limb length controlling for body mass was r=-0.69 (p=0.002). The partial correlation between the gross cost of locomotion at 2.68 ms(-1) and lower-limb length controlling for body mass was r=-0.61 (p=0.009). Thus, subjects with relatively longer lower limbs tend to have lower locomotor costs than those with relatively shorter lower limbs, similar to the results found for human walking. Contrary to general expectation, a linear relationship between stride length and lower-limb length was not found.  相似文献   

3.
Researchers have long debated the locomotor posture used by the earliest bipeds. While many agree that by 3–4 Ma (millions of years ago), hominins walked with an extended-limb human style of bipedalism, researchers are still divided over whether the earliest bipeds walked like modern humans, or walked with a more bent-knee, bent-hip (BKBH) ape-like form of locomotion. Since more flexed postures are associated with higher energy costs, reconstructing early bipedal mechanics has implications for the selection pressures that led to upright walking. The purpose of this study is to determine how modern human anatomy functions in BKBH walking to clarify the links between morphology and energy costs in different mechanical regimes. Using inverse dynamics, we calculated muscle force production at the major limb joints in humans walking in two modes, both with extended limbs and BKBH. We found that in BKBH walking, humans must produce large muscle forces at the knee to support body weight, leading to higher estimated energy costs. However, muscle forces at the hip remained similar in BKBH and extended limb walking, suggesting that anatomical adaptations for hip extension in humans do not necessarily diminish the effective mechanical advantage at the hip in more flexed postures. We conclude that the key adaptations for economical walking, regardless of joint posture, seem to center on maintaining low muscle forces at the hip, primarily by keeping low external moments at the hip. We explore the implications of these results for interpreting locomotor energetics in early hominins, including australopithecines and Ardipithecus ramidus.  相似文献   

4.
A reanalysis of locomotor data from functional, energetic, mechanical and ecological perspectives reveals that limb posture has major effects on limb biomechanics, energy-saving mechanisms and the costs of locomotion. Regressions of data coded by posture (crouched vs. erect) reveal nonlinear patterns in metabolic cost, limb muscle mass, effective mechanical advantage, and stride characteristics. In small crouched animals energy savings from spring and pendular mechanisms are inconsequential and thus the metabolic cost of locomotion is driven by muscle activation costs. Stride frequency appears to be the principal functional parameter related to the decreasing cost of locomotion in crouched animals. By contrast, the shift to erect limb postures invoked a series of correlated effects on the metabolic cost of locomotion: effective mechanical advantage increases, relative muscle masses decrease, metapodial limb segments elongate dramatically (as limbs shift from digitigrade to unguligrade designs) and biological springs increase in size and effectiveness. Each of these factors leads to decreases in the metabolic cost of locomotion in erect forms resulting from real and increasing contributions of pendular savings and spring savings. Comparisons of the relative costs and ecological relevance of different gaits reveal that running is cheaper than walking in smaller animals up to the size of dogs but running is more expensive than walking in horses. Animals do not necessarily use their cheapest gaits for their predominant locomotor activity. Therefore, locomotor costs are driven more by ecological relevance than by the need to optimize locomotor economy.  相似文献   

5.
The patterns of muscle mass distribution along the lengths of limbs may have important effects on the mechanics and energetics of quadrupedalism. Specifically, Myers and Steudel (J. Morphol. 234 (1997) 183) have shown that fore- and hindlimb Natural Pendular Periods (NPPs) may affect quadrupedal kinematics and must converge to reduce locomotor energetic costs. This study quantifies patterns of limb mass distribution in a live sample of Papio cynocephalus using limb inertial properties (mass, center of mass, mass moment of inertia, and radius of gyration). These inertial properties are calculated using a geometric modeling technique similar to that of Crompton et al. (Am. J. phys. Anthrop. 99 (1996) 547). The inertial properties in Papio are compared to those of Canis from Myers and Steudel (J. Morphol. 234 (1997) 183). The Papio sample has convergent fore- and hindlimb NPPs. Additionally, these limb NPPs are relatively large compared to those of Canis due to the relatively distally distributed limb mass in the Papio sample (relatively large limb masses, relatively distal centers of mass and radii of gyration, and relatively large limb mass moments of inertia). This relatively distal limb mass appears related to the grasping abilities of their hands and feet. Causal links are explored between limb shape adaptations for grasping hands and feet and the kinematics of primate quadrupedalism. In particular, if primates in general follow Papio's limb mass distribution pattern, then relatively large limb NPPs may lead to the relatively low stride frequencies already documented for primates. The kinematics of primate quadrupedalism appears to have been strongly influenced by both selection for grasping hands and feet and selection for reduced locomotor energetic costs.  相似文献   

6.
Karen  Steudel  Jeanne  Beattie 《Journal of Zoology》1995,235(3):501-514
Do relatively longer limbs result in a lower energetic cost of locomotion? To determine whether or not cost is correlated with limb length in some way other than that due to their respective relationships to body mass, we have removed the effects of size by calculating the residuals of the relationship between each character and body size. We then regressed the pairs of residuals on one another. Because biological variables do not occur in a series of units that have evolved independently, the degree of divergence of two species is likely to be influenced by the length of time since they last shared a common ancestor. We therefore corrected for the phylogenetic relatedness of species. Data on the energetic cost of locomotion of a wide variety of species were taken from published sources. Data on limb lengths were taken from specimens in various museum collections which were similar in body mass (± 12%) to the specimens on which the cost measurements were made. None of the correlations between the residuals of either fore- or hindlimb length and neither of two estimates of the cost of locomotion was significant at P = 0.05. It is concluded that limb length does not importantly influence an animal's locomotor efficiency. These results do not imply the lack of a close relationship between cost and stride length.  相似文献   

7.
Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties – limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency – were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass0.40); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass1.0), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb''s potential for angular acceleration scales according to geometric similarity, whereas the hindlimb''s potential for angular acceleration scales with positive allometry.  相似文献   

8.
Biomechanical considerations predict that limb proportions should differ between animals with climbing and ground-dwelling lifestyles. Ground-dwellers should have relatively long, parasagittal hind limbs, with high tibia:femur ratios, and relatively short fore limbs. Climbers should have relatively short limbs, with low tibia:femur ratios, and equally long hind and fore limbs. We tested these predictions using gecko species with different locomotion habits (climbing versus ground-dwelling). We measured snout-vent length and lengths of limb segments in 29 species of geckos and analysed them using both non-phylogenetic statistics (nested analysis of variance and principal component analysis) and phylogenetic statistics (analysis of covariance). Neither approach allowed us to find any consistent relationship between habitat use and the morphometric variables. We conclude that either relative limb lengths and limb proportions in geckos have not evolved in response to the physical demands of the microhabitat, or our understanding of those demands is insufficient. Accepted: 22 February 2001  相似文献   

9.
Numerous studies have discussed the influence of thermoregulation on hominin body shape concluding, in accordance with Allen's rule, that the presence of relatively short limbs on both extant as well as extinct hominin populations offers an advantage for survival in cold climates by reducing the limb's surface area to volume ratio. Moreover, it has been suggested that shortening the distal limb segment compared to the proximal limb segment may play a larger role in thermoregulation due to a greater relative surface area of the shank. If longer limbs result in greater heat dissipation, we should see higher resting metabolic rates (RMR) in longer-limbed individuals when temperature conditions fall, since the resting rate will need to replace the lost heat. We collected resting oxygen consumption on volunteer human subjects to assess the correlation between RMR and lower limb length in human subjects, as well as to reexamine the prediction that shortening the distal segment would have a larger effect on heat loss and, thus, RMR than the shortening of the proximal segment. Total lower limb length exhibits a statistically significant relationship with resting metabolic rate (p<0.001; R(2)=0.794). While this supports the hypothesis that as limb length increases, resting metabolic rate increases, it also appears that thigh length, rather than the length of the shank, drives this relationship. The results of the present study confirm the widely-held expectation of Allen's rule, that short limbs reduce the metabolic cost of maintaining body temperature, while long limbs result in greater heat dissipation regardless of the effect of mass. The present results suggest that the shorter limbs of Neandertals, despite being energetically disadvantageous while walking, would indeed have been advantageous for thermoregulation.  相似文献   

10.
Previous studies of daily energy expenditure (DEE) in hominin fossils have estimated locomotor costs using a formula that was based on six species, all 18 kg or less in mass, including no primates, and that has a number of other problems when applied in an ecological context. It is well established that the energetic cost of human walking is lower than that of representative mammals, particularly for individuals with long lower limbs. The current study reevaluates the daily energy expenditures of a variety of hominin species using more appropriate approaches to estimating locomotor costs. To estimate DEE for primates, I relied on published data on body mass, day range, and the percentage of time spent in various activities. Based on those data, I calculated a value for nonlocomotor DEE. I then used a variant of a method that I have suggested elsewhere to calculate the daily cost due to locomotion (DEEL) and summed the two to calculate total DEE. The more up-to-date methods for calculating the cost of travel result in lower estimates of this aspect of the energy budget than seen in previous studies. Values obtained here for DEE in various representatives of Australopithecus are lower than reported previously by around 200 kcal/day. Taking into account the greater economy of human walking, particularly the effect of the longer lower limbs found in many later Homo species, also results in lowered estimates of DEE. Elongation of the lower limbs in H. erectus reduced relative travel costs nearly 50% in comparison to A.L. 288-1 (A. afarensis). The present method for calculating DEE indicates that female H. erectus DEE was 84% greater than that of female Australopithecus; this disparity is even larger than that suggested by previous workers.  相似文献   

11.
Semi-aquatic mammals move between two very different media (air and water), and are subject to a greater range of physical forces (gravity, buoyancy, drag) than obligate swimmers or runners. This versatility is associated with morphological compromises that often lead to elevated locomotor energetic costs when compared to fully aquatic or terrestrial species. To understand the basis of these differences in energy expenditure, this study examined the interrelationships between limb morphology, cost of transport and biomechanics of running in a semi-aquatic mammal, the North American river otter. Oxygen consumption, preferred locomotor speeds, and stride characteristics were measured for river otters (body mass=11.1 kg, appendicular/axial length=29%) trained to run on a treadmill. To assess the effects of limb length on performance parameters, kinematic measurements were also made for a terrestrial specialist of comparable stature, the Welsh corgi dog (body mass=12.0 kg, appendicular/axial length=37%). The results were compared to predicted values for long legged terrestrial specialists. As found for other semi-aquatic mammals, the net cost of transport of running river otters (6.63 J kg(-1)min(-1) at 1.43 ms(-1)) was greater than predicted for primarily terrestrial mammals. The otters also showed a marked reduction in gait transition speed and in the range of preferred running speeds in comparison to short dogs and semi-aquatic mammals. As evident from the corgi dogs, short legs did not necessarily compromise running performance. Rather, the ability to incorporate a period of suspension during high speed running was an important compensatory mechanism for short limbs in the dogs. Such an aerial period was not observed in river otters with the result that energetic costs during running were higher and gait transition speeds slower for this versatile mammal compared to locomotor specialists.  相似文献   

12.
European and Near Eastern Neanderthal postcranial remains have been analyzed to determine the degrees of sexual dimorphism in limb bone size and robusticity present among the Neanderthals. The remains were sexed on the basis of pelvic morphology where possible (seven males and three females) and otherwise on the basis of absolute size employing limb bone lengths and articular dimensions (12 males and 15 females). Neanderthal sexual size dimorphism, both within single site samples and in the total sexable sample, is virtually the same as that of recent human samples. Furthermore, despite a tendency towards more robust limbs, the Neanderthals exhibit sexual dimorphism in limb bone shaft and articular robusticity similar to that of recent human samples. By the time of the Neanderthals, sexual dimorphism in limb bone size and robusticity appears to have reached recent human proportions.  相似文献   

13.
Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles.  相似文献   

14.
Past studies of human locomotor efficiency focused on movement over flat surfaces and concluded that Neandertals were less efficient than modern humans due to a truncated limb morphology, which may have developed to aid thermoregulation in cold climates. However, it is not clear whether this potential locomotor disadvantage would also exist in nonflat terrain. This issue takes on added importance since Neandertals likely spent a significant proportion of their locomotor schedule on sloped, mountainous terrains in the Eurasian landscape. Here a model is developed that determines the relationship between lower limb segment lengths, terrain slope, excursion angle at the hip, and step length. The model is applied to Neandertal and modern human lower limb reconstructions. In addition, for a further independent test that also allows more climateterrain cross comparisons, the same model is applied to bovids living in different terrains and climates. Results indicate that: (1) Neandertals, despite exhibiting shorter lower limbs, would have been able to use similar stride frequencies per speed as longer-limbed modern humans on sloped terrain, due to their lower crural indices; and (2) shortened distal limb segments are characteristic of bovids that inhabit more rugged terrains, regardless of climate. These results suggest that the shortened distal lower limb segments of Neandertals were not a locomotor disadvantage within more rugged environments.  相似文献   

15.
Efferent fibers of the hind limbs were divided and electrical activity of a filament from the ventral root of S1 was recorded in experiments on mesencephalic cats capable of locomotion in response to stimulation of the "locomotor region" of the midbrain. In response to weak stimulation of the locomotor region, when the forelimbs were not performing stepping movements, regular waves of activity appeared in the filament with a period close to the duration of the step during walking (0.5–1.0 sec). This periodic process was largely dependent on the tonic afferent inflow: various extero- and interoceptive stimuli applied to the hind limb could change the period of generation or abolish it. Active stepping movements of the forelimbs as well as passive movements of the hind limbs led to synchronization of activity in the filament with these movements. After division of the afferent fibers to the hind limbs the animals performed one or two steps in response to stimulation of the dorsal root of S1 by a short series of pulses. They could also perform independent stepping movements of the hind limb if 15–30% of the fibers in the dorsal root of L7 remained intact.M. V. Lomonosov Moscow State University. Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 4, pp. 401–409, 1972.  相似文献   

16.
The aim of the present study was to evaluate the importance and the necessity of metabolic measurements to quantify locomotor impairment in a clinical context. Oxygen consumption, heart rate, pulmonary ventilation and walking speed were measured during locomotion in 14 normal subjects, used as a control group, and 82 patients with different pathologies [hemiparetic, paraparetic, tetraparetic, orthopaedic and paraplegic patients, who walked using a reciprocating gait orthosis (RGO)]. The subjects were characterized on the basis of a cumulative impairment score (CIS), based on clinical scales commonly used to evaluate impairment and disability in locomotion. Appropriate indices of energy, cardiac and ventilatory costs expressed per metre walked, globally called physiological costs, were obtained. It resulted that the most comfortable speed (MCS) of normal subjects was significantly higher than that of each group of patients. Normal subjects' physiological costs were found to be significantly lower than those of patients who needed either a device or the help of a person to walk. All measured parameters correlated significantly with each other. The MCS was found to be the most correlated parameter with the CIS (r = 0.8), and therefore it must be considered the best single measurement, if only one is to be used. Measurements more precise than MCS, such as the physiological costs, may be necessary in clinical trials.  相似文献   

17.
The kinematics of rat hindlimb movements were assessed and compared pre- and post-deafferentation during swimming, forelimb treadmill locomotion plus hindlimb swimming motion, and walking using all four limbs. All types of locomotion were characterized by an increase in the frequency of locomotor rhythm and reduced amplitude of motion at the hindlimb joints following deafferentation. The reduced change observed in the angle of the coxofemoral joint, indicative of a horizontal component in locomotor motion, was mainly brought about by less marked extension. This would confirm evidence indicating that increased load on the extremities, with its ensuing naturally-occurring afferent outflow, is accompanied by a reduced locomotor motion rate and a rise in the amplitude of the latter due to intensified extension of the limb. The increased forward carriage of the hind limb seen during the transition to four-legged locomotion persisted after deafferentation; this may be considered a sign of coordination amongst the limbs. Deafferentation led to a reduction in the MEG of muscle activity, which was found to be lowest in swimming and highest during walking. The role of the afferent inflow in shaping different types of locomotor motion is evaluated.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 520–525, July–August, 1987.  相似文献   

18.
As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine.  相似文献   

19.
In phylogenetically based systematics, Mammalia is the nomenclatural term which designates the clade stemming from the most recent common ancestry of monotremes and theria [, Sys. Biol. 43 (1994) 497]. Considering that locomotor performance is a prevalent function to provide the necessary conditions to survive and transmit genes, it may be questioned if the diverse types of locomotion exhibited by extant mammals could have played a role in their evolution, or have only followed it. We may look after the structural and behavioural features which are involved in mammal locomotion compared to other tetrapods and test if they fit with the proposed phylogeny. Several factors may be checked: scaling effect in relation to gravitational constraints; geometrical distribution of masses in the body, and relative mechanical role of the limbs in the production of the external forces necessary to forward motion. Classically, it was thought that the fastest gaits used by terrestrial mammals were based upon a unique kind of limb motion co-ordination, called asymmetrical gaits, which in turn may be thought to be related to a peculiar neuronal wiring. Kinematic analysis brings an insight to this topic. Is the search for an ancestral mammalian locomotor pattern judicious? Notice the small size of many of the first mammals and their probable locomotor plasticity. (relation between grain size of the elements within the substrate and the organism scale). At a small size, the gravitational constraint is less important, and the distinction between terrestrial and arboreal has probably no sense when the limbs are the principal motor elements. There remains the importance of the geometrical distribution of body elements, the proportions of the limbs and of the head-neck complex, the tail merely as an appendix, a set of factors which may have generated the frame of constraints within which diverse locomotor modes have evolved.  相似文献   

20.
Locomotor performance of lizards and its relationship to the ecology and morphology of the forms concerned has been well studied recently. Asymmetry of limbs might make the body unstable and make performance less effective. However, their effects on terrestrial locomotion remain almost unexplored. In this article, the escape performance of the lizard Psammodromus algirus running at high speed was related to hindlimb morphology and fluctuating asymmetry levels. Femur length was significantly shorter than crus length. However, absolute fluctuating asymmetry in femur length was significantly larger than in crus length. Asymmetry was not related to body or limb size, thus larger individuals or those with longer limbs did not have significantly greater fluctuating asymmetry. Neither body size nor the length of the limbs (femur or crus) were significantly related to any of the variables describing escape performance. However, escape performance was affected by femur-length fluctuating asymmetry, which resulted in significantly reduced overall escape speeds. In contrast, asymmetry in crus length did not affect escape performance. We discuss the possible basis of these alterations of locomotion, the relevance of reduced performance for the ecology of this species, and how individuals may compensate for the costs of asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号