首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used captive house sparrows (Passer domesticus) to identify regulatory mechanisms underlying seasonal (mimicked by changes in photoperiod) and diel differences in corticosterone output. Corticosterone responses were measured during three simulated seasons: short-day and long-day photoperiods and while birds underwent a pre-basic molt. Under all three conditions we tested for adrenal sensitivity by injecting exogenous ACTH, for pituitary sensitivity by injecting corticotropin-releasing factor (CRF) and arginine vasotocin (AVT), and for diel changes by repeating the injections during the day and at night. The daytime adrenal sensitivities were greatest on long days, lower on short days, and lowest during molt. These data suggest that reductions in either adrenal sensitivity to ACTH and/or capacity to secrete corticosterone could explain lowered endogenous corticosterone titers during molt. Furthermore, adrenal sensitivity to ACTH and pituitary sensitivity to AVT appeared to be greatest at night. This suggests that both the adrenal's sensitivity to the ACTH signal and the pituitary's capacity to secrete ACTH might provide a mechanism allowing for diel changes in corticosterone titers. This differs substantially from what is known about diel regulation in rodents. Taken together, these data provide further evidence that there are complex regulatory mechanisms controlling diel and seasonal changes in corticosterone titers in birds.  相似文献   

2.
We used captive European starlings (Sturnus vulgaris) to test whether corticosterone responses differed in birds held under normal laboratory conditions or conditions of chronic stress. Surprisingly, both basal corticosterone concentrations and corticosterone responses to acute stress were significantly reduced when birds were chronically stressed. To determine the mechanism underlying this reduced response, animals under both conditions were injected with lactated Ringer's solution (control), adrenocorticotropin (ACTH), arginine vasotocin (AVT), or dexamethasone (DEX). ACTH increased corticosterone concentrations above stress-induced levels in both cases, although maximum responses were lower in chronically stressed birds. AVT did not augment the corticosterone response under nonchronically stressed conditions, but it did under chronically stressed conditions. DEX reduced maximal corticosterone concentrations in both cases. Neither ovine nor rat corticotropin-releasing factor (CRF) altered normal stress responses. These data indicate that changes in responsiveness of the hypothalamic-pituitary-adrenal axis to ACTH and AVT serve to downregulate corticosterone responses during chronic stress. Furthermore, these data lead to the following hypothesis: ACTH output from the pituitary limits maximum corticosterone concentrations under normal conditions, but reduced AVT release from the hypothalamus regulates lower corticosterone concentrations under chronic stress conditions.  相似文献   

3.
Several free-living avian species have recently been shown to seasonally modulate corticosterone release in response to capture and restraint. We examined possible mechanisms underlying seasonal adrenocortical modulation in snow buntings (Plectrophenax nivalis), a species that breeds and molts (the energetically costly replacement of feathers) in the Alaskan Arctic. Snow buntings dramatically reduced baseline and maximal corticosterone titers during molt compared to the breeding season. This effect is not explained by changes in either corticosterone binding protein capacity or the overall condition of the bird (assessed by weight and fat storage). Although the adrenal's capacity to secrete corticosterone is reduced during molt, adrenal insensitivity does not fully explain reduced maximal output since exogenous adrenocorticotropic-hormone enhanced corticosterone release during both seasons. In contrast, no exogenous adrenocorticotropic hormone releasing factor (corticotrophin-releasing factor, arginine vasotocin or mesotocin) enhanced corticosterone secretion during molt. This suggests that the pituitary's endogenous adrenocorticotropic secretion was maximal in response to capture and handling, making the pituitary an important site regulating corticosterone levels. Taken together, these results indicate that seasonal modulation of corticosterone release in this species is controlled at both the adrenal and pituitary glands. Accepted: 16 February 1998  相似文献   

4.
Higher corticosterone (CORT) responses to acute stress have previously been reported in quail selected for short (STI) duration of tonic immobility (TI) than for long TI (LTI), although behavioral studies indicated that LTI quail were more fearful. To investigate adrenal and pituitary function in these quail lines and their possible involvement in the differences in hypothalamic-pituitary-adrenal (HPA) axis reactivity, we measured CORT responses to adrenocorticotropin (1-24 ACTH), corticotropin-releasing factor (CRF), and arginine vasotocin (AVT) after characterizing the nucleotide acid sequences of these peptides in quail. Although maximum adrenal responses, assessed by ACTH challenge, were higher in STI quail, adrenal sensitivity was comparable for the two genotypes. It is therefore unlikely that differences in HPA axis reactivity involved the adrenal level. AVT and ACTH induced comparable CORT responses in both genotypes, whereas those induced by CRF were much lower. AVT is thus more potent than CRF in quail, but the respective maximum pituitary capacity of both genotypes to secrete ACTH was similar, and it is doubtful that the AVT pathway is involved in the difference in HPA axis reactivity between genotypes. On the other hand, the higher CORT responses induced by CRF in STI quail suggest that CRF might be involved in the differences in HPA axis reactivity between LTI and STI genotypes.  相似文献   

5.
Little is known about baseline concentrations of adrenal hormones and hormonal responses to stress in sea ducks, although significant population declines documented in several species suggest that sea ducks are exposed to increased levels of environmental stress. Such declines have been observed in geographically distinct harlequin duck populations. We performed an adrenocorticotropic hormone (ACTH) challenge to evaluate adrenal function and characterize corticosterone concentrations in captive harlequin ducks and investigated the effects of capture, surgery, and short term confinement on corticosterone concentrations in wild harlequin ducks. Harlequin ducks responded to the ACTH challenge with an average three-fold increase in serum corticosterone concentration approximately 90 min post injection, and a four- to five-fold increase in fecal glucocorticoid concentration 2 to 4 h post injection. Serum corticosterone concentrations in wild harlequin ducks increased within min of capture and elevated levels were found for several hours post capture, indicating that surgery and confinement maintain elevated corticosterone concentrations in this species. Mean corticosterone concentrations in wild harlequin ducks held in temporary captivity were similar to the maximum response levels during the ACTH challenge in captive birds. However, large variation among individuals was observed in responses of wild birds, and we found additional evidence suggesting that corticosterone responses varied between hatch year and after hatch year birds.  相似文献   

6.
Little is known about baseline concentrations of adrenal hormones and hormonal responses to stress in sea ducks, although significant population declines documented in several species suggest that sea ducks are exposed to increased levels of environmental stress. Such declines have been observed in geographically distinct harlequin duck populations. We performed an adrenocorticotropic hormone (ACTH) challenge to evaluate adrenal function and characterize corticosterone concentrations in captive harlequin ducks and investigated the effects of capture, surgery, and short term confinement on corticosterone concentrations in wild harlequin ducks. Harlequin ducks responded to the ACTH challenge with an average three-fold increase in serum corticosterone concentration approximately 90 min post injection, and a four- to five-fold increase in fecal glucocorticoid concentration 2 to 4 h post injection. Serum corticosterone concentrations in wild harlequin ducks increased within min of capture and elevated levels were found for several hours post capture, indicating that surgery and confinement maintain elevated corticosterone concentrations in this species. Mean corticosterone concentrations in wild harlequin ducks held in temporary captivity were similar to the maximum response levels during the ACTH challenge in captive birds. However, large variation among individuals was observed in responses of wild birds, and we found additional evidence suggesting that corticosterone responses varied between hatch year and after hatch year birds.  相似文献   

7.
8.
The effect of synthetic alpha-human atrial natriuretic polypeptide (alpha-hANP) on the in vivo and in vitro release of ACTH and corticosterone was examined. In the in vivo study ACTH and corticosterone responses to rapid 2-ml/rat hemorrhage were measured in sixteen conscious rats after alpha-hANP administration. The hemorrhage increased plasma ACTH and corticosterone concentrations in the control group of rats (p greater than 0.01). ANP inhibited hemorrhage-induced ACTH secretion (p less than 0.05), but the plasma corticosterone response was not affected. In the in vitro study a high concentration of ANP (1 microM) reduced basal corticosterone secretion from the isolated rat adrenal gland (p less than 0.05), but the response to ACTH (10 ng/ml) and dibutyryl cyclic AMP (0.5 mM, 5.0 mM) was not affected. Our data suggest that ANP inhibits hemorrhage-induced ACTH secretion from the anterior pituitary but inhibits corticosterone secretion from the adrenal gland very weakly.  相似文献   

9.
Baseline and stress-induced corticosterone (CORT), heart rate (fH), and energy expenditure were measured in eight captive European starlings Sturnus vulgaris during and following a prebasic molt. The fH and oxygen consumption (V O2 ) were measured simultaneously across a range of heart rates, and energy expenditure (kJ/d) was then calculated from data. Energy expenditure and fH were strongly and positively correlated in each individual. Baseline fH and energy expenditure were significantly higher during molt. Molting starlings expended 32% more energy over 24 h than nonmolting birds, with the most significant increase (60%) occurring at night, indicating a substantial energetic cost to molt. Furthermore, the cardiac and metabolic responses to stress during molt were different than during nonmolt. Birds were subjected to four different 30-min acute stressors. The fH and CORT responses to these stressors were generally lower during molt. Although restraint caused a 64% increase in daily energy expenditure during nonmolt, no other stressor caused a significant increase in energy expenditure. Overall, our data suggest that molt is not only energetically expensive but that it also alters multiple stress response pathways. Furthermore, most acute stressors do not appear to require a significant increase in energy expenditure.  相似文献   

10.
Water deprivation (WD) resulted in increased serum osmotic pressure (OP) and decreased body weight (WB); adrenal aldosterone content did not change. Adrenal corticosterone content tended to be elevated during early WD, indicating a stress response, but tended to decrease after seven days of WD, suggesting adrenal fatigue. During water restriction (WR), after the period of weight loss, adrenal corticosterone content and serum OP were elevated. As the birds began to gain weight, aldosterone levels did not change but adrenal corticosterone content and serum OP approached control values, suggesting that the birds were beginning to adapt to the WR. Adrenal sensitivity to ACTH was indicated by the elevated adrenal aldosterone and corticosterone content after ACTH injection.  相似文献   

11.
A growth hormone-secreting tumor (StW5 was implanted into male rats and resulted in a tripling of adrenal weight concomitant with a 30% decrement in pituitary weight. Plasma concentrations of corticosterone in tumor-bearing (TB) rats were significantly elevated at rest or after ACTH injections or the stress of either anesthesia. The rise in plasma concentrations of corticosterone was due mainly to the large increment in adrenal size although a significant increase in adrenal responsiveness to ACTH was demonstrated in vitro. In addition, plasma corticosterone concentrations were higher in TB rats despite both a doubling of the blood volume and a 50% increase in liver capacity to metabolize corticosterone. Pituitary ACTH content was significantly lower in TB rats, but these pituitary glands could still release near-normal quantities of ACTH as shown both by in vitro incubations and adrenal corticosterone output following ether stress.  相似文献   

12.
The purpose of this investigation was to determine the influence of cholecystokinin octapeptide (CCK-OP) on pituitary-adrenal hormone secretion. CCK-OP at a dose of 5 μg/kg (i.p.) elevated plasma corticosterone from 27 to 43 μg/100 ml in one experiment and from 12 to 50 μg/100 ml in a second experiment: Lower doses of CCK-OP (0.5 μg/kg) elevated corticosterone from 12 μg/100 ml to 20 μg/100 ml. CCK-OP (1, 10, and 100 ng/ml) had no effect on ACTH-induced corticosterone released by isolated adrenal cells in vitro when tested in the presence of 50 pg of ACTH1?24. 100 and 500 ng of CCK-OP resulted in an increased pituitary ACTH release equal to 123% (n.s.) and a 206% (P < 0.05) of control, respectively. In comparison, a 35 hypothalamic stalk median eminence equivalent increased ACTH release to 313% of control (P < 0.05). The exact mechanism of this CCK effect on pituitary ACTH release is unknown. Although it is likely that the direct effects on the pituitary in vitro represent a pharmacologic and not a physiologic effect of this peptide, in vivo doses are between doses used for pancreatic effects and satiety effects suggesting that there may be a physiologic stimulating action of this peptide on the hypothalamic-pituitary-adrenal axis but at a level above the adrenal and pituitary.  相似文献   

13.
The effect of lithium administration on adrenal steroidogenesis has been studied in rats. An increase in plasma corticosterone (CS) levels was observed and this appears to be due to increased steroidogenesis. This effect on the adrenal is mediated via ACTH, suggesting an involvement of the pituitary adrenal axis.  相似文献   

14.
Bilateral olfactory bulbectomy (OB) has drastic biochemical and behavioral effects and is often associated with an increase in plasma corticosterone concentrations. This experiment examined the effects of OB on adrenocorticotropin (ACTH) and corticosterone release under basal and stress conditions and on proopiomelanocortin (POMC) gene expression. Bulbectomy potentiated hypophysal ACTH and adrenal corticosterone release induced by ether stress but had no effect on ACTH release under basal conditions, despite a significant increase of circulating corticosterone. POMC gene expression was stronger (+60%) in OB rats than in sham-operated rats. These results suggest that olfactory bulbectomy substantially altered the negative feed-back exerted by glucocorticoids on anterior pituitary corticotropic cells in the male rat.  相似文献   

15.
Brain corticotropin-releasing hormone (CRH) concentration and pituitary adreno-cortical responses were examined in chronically stressed rats: body restraint stress (6 h/day) for 4 or 5 weeks. Stressed rats showed a reduction in weight gain. CRH concentration in the median eminence and the rest of the hypothalamus were not different between control and chronically immobilized rats. The anterior pituitary adenocorticotropic hormone (ACTH) concentration was elevated in chronically stressed rats, whereas plasma ACTH and corticosterone levels did not differ from the control values. The median eminence CRH concentration was reduced to the same extent at 5 min after onset of ether exposure (1 min) in chronically immobilized rats and controls. However, plasma ACTH and corticosterone showed greater responses to ether stress in chronically immobilized rats than in control rats. Plasma ACTH and corticosterone responses to exogenous CRH were not different between control and chronically immobilized rats, while the response to arginine vasopressin (AVP) was significantly greater in chronically immobilized rats. These results suggest that chronic stress caused an increase in the ACTH-secreting mechanism and that pituitary hypersensitivity to vasopressin might at least be partly responsible for this.  相似文献   

16.
Acute episodes of severe hypoxia are among the most common stressors in neonates. An understanding of the development of the physiological response to acute hypoxia will help improve clinical interventions. The present study measured ACTH and corticosterone responses to acute, severe hypoxia (8% inspired O(2) for 4 h) in neonatal rats at postnatal days (PD) 2, 5, and 8. Expression of specific hypothalamic, anterior pituitary, and adrenocortical mRNAs was assessed by real-time PCR, and expression of specific proteins in isolated adrenal mitochondria from adrenal zona fascisulata/reticularis was assessed by immunoblot analyses. Oxygen saturation, heart rate, and body temperature were also measured. Exposure to 8% O(2) for as little as 1 h elicited an increase in plasma corticosterone in all age groups studied, with PD2 pups showing the greatest response ( approximately 3 times greater than PD8 pups). Interestingly, the ACTH response to hypoxia was absent in PD2 pups, while plasma ACTH nearly tripled in PD8 pups. Analysis of adrenal mRNA expression revealed a hypoxia-induced increase in Ldlr mRNA at PD2, while both Ldlr and Star mRNA were increased at PD8. Acute hypoxia decreased arterial O(2) saturation (SPo(2)) to approximately 80% and also decreased body temperature by 5-6 degrees C. The hypoxic thermal response may contribute to the ACTH and corticosterone response to decreases in oxygen. The present data describe a developmentally regulated, differential corticosterone response to acute hypoxia, shifting from ACTH independence in early life (PD2) to ACTH dependence less than 1 wk later (PD8).  相似文献   

17.
The aim of this study was to investigate the effects of ACTH, phytoestrogens (genistein, daidzein, biochanin A and coumestrol), and animal estrogens (estradiol and estrone) on corticosterone secretion by isolated adrenocortical cells of the ganders in breeding (April) and nonbreeding seasons (July). ACTH stimulated corticosterone output in the breeding season. In July (photorefractoriness and postbreeding molt) ACTH had no effect on corticosterone production. Coumestrol reduced corticosterone secretion by the cells obtained in nonbreeding season. Other examined phytoestrogens did not affect corticosterone production. Estrogens showed differentiated effects. Estradiol stimulated the corticosterone output in breeding season; estrone inhibited corticosterone release in July. The season can probably affect sensitivity of isolated gander adrenal cells, especially to ACTH. It seems that goose adrenocortical cells, in contrast to the mammalian cells, can be weakly sensitive to phytoestrogens.  相似文献   

18.
Corticosterone concentrations were measured in captive house sparrows (Passer domesticus) and found to vary both daily and with different photoperiods. Basal corticosterone was highest during the dark hours of the daily cycle and lowest during the light hours. This trend remained constant when the birds were held on short-day and long-day light cycles, and while the birds were undergoing a prebasic molt. At all times, corticosterone concentrations significantly increased in response to the stress of handling and restraint. Stress-induced corticosterone concentrations, however, only reflected a daily rhythm when the birds were held on short-days. Furthermore, even though mean basal corticosterone concentrations were equivalent over the short-day, long-day, and molt, total corticosterone output in response to stress was lower in molting birds, especially at night. Therefore, these data indicate that captive house sparrows modulate corticosterone in daily cycles that change in response to photoperiod.  相似文献   

19.
In birds, ACTH release from the anterior pituitary gland during stress is controlled by CRH and arginine vasotocin (AVT). Using 5-wk-old male chicks, simultaneous iv injections of CRH and AVT were found to result in a greater than additive increase in plasma corticosterone levels compared with that obtained with individual administration of either peptide hormone. In order to investigate molecular mechanisms underlying this observation, the chicken CRH receptor (CRHR) and vasotocin VT2 receptor (VT2R) were fused to cyan and yellow fluorescent proteins and expressed in HeLa cells. The resulting CRHR and VT2R fusion proteins were expressed appropriately in the plasma membrane and were found to couple to downstream signal transduction pathways. Quantitative fluorescence resonance energy transfer (FRET) analysis was used to determine whether the CRHR and VT2R formed heterodimers. In the absence of CRH and AVT, the FRET efficiency was 15-18%, and the distance between receptors was 5-6 nm. Treatment of the cells that expressed both cyan fluorescent protein-CRHR and yellow fluorescent protein-VT2R with CRH or AVT alone did not lead to a significant change in the FRET efficiency. However, simultaneous addition of these hormones increased the efficiency of the FRET signal and decreased the distance between the two receptors. In HeLa cells expressing both CRHR and VT2R, treatment with CRH and AVT resulted in a significant increase in cAMP production over that with CRH alone, indicating that heterodimer formation may enhance the ability of the CRHR to activate downstream signal transduction.  相似文献   

20.
Free-roaming animals continually cope with changes in their environment. One of the most unpredictable environmental phenomena is weather. Being able to respond to weather appropriately is crucial as it can be a threat to survival. The stress response, consisting of increases in heart rate and release of glucocorticoids, is an important mechanism by which animals cope with stressors. This study examined behavioral, heart rate, and corticosterone responses of captive European starlings (Sturnus vulgaris) to two aspects of weather mimicked under controlled conditions, a subtle (3 °C) decrease in temperature and a short, mild bout of rain. Both decreased temperature and exposure to rain elicited increases in heart rate and corticosterone in non-molting starlings. Molt is an important life history stage in birds that affects feather cover and may require a different response to weather-related stressors. We repeated the experiment in molting starlings and found increases in heart rate in response to rain and cold wind. However, the hypothalamic–pituitary–adrenal (HPA)-axis was suppressed during molt, as molting starlings did not increase corticosterone release in response to either stimulus. These data suggest these stimuli induce increased allostatic load in starlings, and that animals may adjust their response depending on the life-history stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号