首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
We compared the molecular organization of equimolar [3alpha-2H1]cholesterol in 18:0-18:1PC (1-stearoyl-2-oleoylphosphatidylcholine), 18:0-22:6PC (1-stearoyl-2-docosahexaenoylphosphatidylcholine), 18:0-20:4PC (1-stearoyl-2-arachidonylphosphatidylcholine) and 20:4-20:4PC (1,2-diarachidonylphosphatidylcholine) bilayers by solid state 2H NMR. Essentially identical quadrupolar splittings (delta v(r) = 45 +/- 1 kHz) corresponding to the same molecular orientation characterized by tilt angle alpha0 = 16 +/- 1 degrees were measured in 18:0-18:1PC, 18:0-22:6PC and 18:0-20:4PC. A profound difference in molecular interaction with dipolyunsaturated 20:4-20:4PC, in contrast, is indicated for the sterol. Specifically, the tilt angle alpha0 = 22 +/- 1 degrees (derived from delta v(r) = 37 +/- 1 kHz) is greater and its membrane intercalation is only 15 mol%.  相似文献   

2.
The pem1/cho2 pem2/opi3 double mutant of Saccharomyces cerevisiae, which is auxotrophic for choline because of the deficiency in methylation activities of phosphatidylethanolamine, grew in the presence of 0.1 mM dioctanoyl-phosphatidylcholine (diC(8)PC). Analysis of the metabolism of methyl-(13)C-labeled diC(8)PC ((methyl-(13)C)(3)-diC(8)PC) by electrospray ionization tandem mass spectrometry (ESI-MS/MS) revealed that it was rapidly converted to (methyl-(13)C)(3)-PCs containing C16 or C18 acyl chains. (Methyl-(13)C)(3)-8:0-lyso-PC, (methyl-(13)C)(3)-8:0-16:0-PC and (methyl-(13)C)(3)-8:0-16:1-PC, which are the probable intermediate molecular species of acyl chain remodeling, appeared immediately after 5 min of pulse-labeling and decreased during the subsequent chase period. These results indicate that diC(8)PC was taken up by the pem1 pem2 double mutant and that the acyl chains of diC(8)PC were exchanged with longer yeast fatty acids. The temporary appearance of (methyl-(13)C)(3)-8:0-lyso-PC suggests that the remodeling reaction may consist of deacylation and reacylation by phospholipase activities and acyltransferase activities, respectively. The detailed analyses of the structures of (methyl-(13)C)(3)-8:0-16:0-PC and (methyl-(13)C)(3)-8:0-16:1-PC by MS/MS and MS(3) strongly suggest that most (methyl-(13)C)(3)-8:0-16:0-PCs have a C16:0 acyl chain at sn-1 position, whereas (methyl-(13)C)(3)-8:0-16:1-PCs have a C16:1 acyl chain at either sn-1 or sn-2 position in a similar frequency, implying that the initial C16:0 acyl chain substitution prefers the sn-1 position; however, the C16:1 acyl chain substitution starts at both sn-1 and sn-2 positions. The current study provides a pivotal insight into the acyl chain remodeling of phospholipids in yeast.  相似文献   

3.
Polyunsaturated fatty acids are widely distributed components of biological membranes and are believed to be involved in many biological functions. However, the mechanisms by which they act on a molecular level are not understood. To further investigate the unique properties of omega 3 polyunsaturated phospholipid bilayers, deuterium nuclear magnetic resonance (2H NMR) studies have been made of the liquid-crystalline (L alpha) and gel phases of a homologous series of mixed-chain phosphatidylcholines containing docosahexaenoic acid: (per-2H-n:0)(22:6)PC, where n = 12, 14, 16, and 18. The moments of the 2H NMR lineshapes have been evaluated, and from these the warming and cooling main phase transition temperatures were determined. The transition temperatures of the mixed-chain series were found to be significantly lower than those of the corresponding lipids in the disaturated series, di(per-2H-n:0)PC, with hystereses ranging from 2 to 14 degrees C. Distinct effects of the docosahexaenoyl chain on bilayer order were found, though these effects varied across the mixed-chain series. In evaluating the moment data, an empirical method for normalizing the moments with respect to differences in temperature was applied, in addition to using the reduced temperature method. For the systems studied here, the method of normalization had no significant effect on the interpretation of the moment data.  相似文献   

4.
The molecular species composition of red blood cell diacyl-phosphatidylcholine (PC), diacyl-phosphatidylethanolamine (PE) and alkenylacyl-PE (plasmalogen PE) has been analyzed in normolipidemic and hyperlipidemic donors. In all three phospholipid subclasses the percentages of the species 16:0/20:4 were increased in hyperlipidemic patients. In diacyl-PE, 18:1/20:4 was also elevated. No changes were observed in the other quantitatively important molecular species containing arachidonic acid at sn-2, namely 18:0/20:4. The rise in 16:0/20:4 in diacyl-PC and diacyl-PE of hyperlipidemic donors was accompanied by a fall in molecular species with linoleic acid (18:2) at sn-2 (in particular 18:1/18:2). In alkenylacyl-PE the elevation of 16:0/20:4 was compensated by a decrease in species with docosatetraenoic acid (22:4) at sn-2 in particular by a fall in 16:0/22:4. Among all donors, the percentages of 16:0/20:4 in diacyl-PC and PE were positively associated with plasma total cholesterol levels. The changes in molecular species composition of PC and PE in hyperlipidemia are expected to alter the function of erythrocyte membrane transport proteins and--if present also in other cell types--to affect eicosanoid metabolism.  相似文献   

5.
The activity of the phosphatidylcholine transfer protein from bovine liver toward phosphatidylcholine isomers carrying a long and a short fatty acyl chain on either the sn-1- or sn-2-position was determined by way of the monolayer-vesicle assay. In this assay equimolar mixtures of the isomers were spread at the air/water interface and their transfer measured to the vesicles in the subphase initiated by addition of the transfer protein. The following isomers were tested: 1-decanoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine (C10:0/[3H]C18:1-PC) and 1-oleoyl-2-decanoyl-sn-glycero-3-phospho[14C]choline (C18:1/C10:0-[14C]PC); 1-lauroyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine (C12:0/[3H]C18:1-PC) and 1-oleoyl-2-[14C]lauroyl-sn-glycero-3-phosphocholine (C18:1/[14C]C12:0-PC); 1-myristoyl-2-[3H]oleoyl-sn-glycero-3-phosphocholine (C14:0/[3H]C18:1-PC) and 1-oleoyl,2-myristoyl-sn-glycero-3-phospho[14C]choline (C18:1/C14:0-[14C]PC). It was found that the protein transferred C10:0/[3H]C18:1-PC twice as fast as C18:1/C10:0-[14C]PC. Similar differences in rate were observed for C12:0/[3H]C18:1-Pc and C18:1/[14C]C12:0-PC but not for the isomers carrying myristic acid. We propose that the transfer protein can discriminate between PC isomers due to the presence of distinct binding sites for the sn-1- and sn-2-acyl chain (Berkhout et al. (1984) Biochemistry, 23, 1505-1513).  相似文献   

6.
Solid-state 2H nuclear magnetic resonance spectroscopy was used to determine the orientational order parameter profiles for a series of phosphatidylcholines with perdeuterated stearic acid, 18:0d35, in position sn-1 and 18:1 omega 9, 18:2 omega 6, 18:3 omega 3, 20:4 omega 6, 20:5 omega 3, or 22:6 omega 3 in position sn-2. The main phase transition temperatures were derived from a first moment analysis, and order parameter profiles of sn-1 chains were calculated from dePaked nuclear magnetic resonance powder patterns. Comparison of the profiles at 37 degrees C showed that unsaturation causes an inhomogenous disordering along the sn-1 chain. Increasing sn-2 chain unsaturation from one to six double bonds resulted in a 1.6-kHz decrease in quadrupolar splittings of the sn-1 chain in the upper half of the chain (or plateau region) and maximum splitting difference of 4.4 kHz at methylene carbon 14. The change in chain order corresponds to a decrease in the 18:0 chain length of 0.4 +/- 0.2 A with 18:2 omega 6 versus 18:1 omega 9 in position sn-2. Fatty acids containing three or more double bonds in sn-2 showed a decrease in sn-1 chain length of 0.7 +/- 0.2 A compared with 18:1 omega 9. The chain length of all lipids decreased with increasing temperature. Highly unsaturated phosphatidylcholines (three or more double bonds in sn-2) had shorter sn-1 chains, but the chain length was somewhat less sensitive to temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Polycrystalline lipid samples of a series of mono- and polyunsaturated, double bond positional isomers of 1-eicosanoyl-d(39)-2-eicosenoyl-sn-glycero-3-phosphocholines [C(20-d(39)):C(20:1 Delta(j))PC, with j = 5, 8, 11, or 13; C(20-d(39)):C(20:2 Delta(11,14))PC; and C(20-d(39)):C(20:3 Delta(11, 14,17))PC] were investigated using vibrational Raman spectroscopy to assess the acyl chain packing order-disorder characteristics and putative bilayer cluster formation of the isotopically differentiated acyl chains. Perdeuteration of specifically the saturated sn-1 acyl chains for these bilayer systems enables each chain's intra- and intermolecular conformational and organizational properties to be evaluated separately. Various saturated chain methylene CD(2) and carbon-carbon (C&bond;C) stretching mode peak height intensity ratios and line width parameters for the polycrystalline samples demonstrate a high degree of sn-1 chain order that is unaffected by either the double bond placement or number of unsaturated bonds within the sn-2 chain. In contrast, the unsaturated sn-2 chain spectral signatures reflect increasing acyl chain conformational disorder as either the cis double bond is generally repositioned toward the chain terminus or the number of double bonds increases from one to three. The lipid bilayer chain packing differences observed between the sn-1 and sn-2 chains of this series of monounsaturated and polyunsaturated 20 carbon chain lipids suggest the existence of laterally distributed microdomains predicated on the formation of highly ordered, saturated sn-1 chain clusters.  相似文献   

8.
The percentage of saturated cholesteryl esters (CEs) synthesized by human LCAT is several times higher than expected from the sn-2 acyl composition of plasma phosphatidylcholine (PC), whereas the synthesis of 20:4 CE and 22:6 CE is much lower than expected. To explain these discrepancies, we proposed that LCAT transfers some saturated fatty acids from the sn-1 position of PC species that contain 20:4 or 22:6 at sn-2. The present studies provide in vivo evidence for this hypothesis. We determined the composition and synthesis of CE species in plasma of volunteers before and after a 6 week dietary supplementation with docosahexaenoic acid (22:6; DHA). In addition to an increase in the DHA content of all plasma lipids, there was a significant (+12%; P <0.005) increase of 16:0 CE, although there was no increase in 16:0 at sn-2 of PC. The increase of DHA in CE was much lower than its increase at sn-2 of PC. Ex vivo synthesis of CE species in plasma showed a significant (+24%; P <0.005) increase in the synthesis of 16:0 CE after DHA supplementation, which correlated positively with the increase of 22:6, but not of 16:0, at sn-2 of PC. These results show that the positional specificity of human LCAT is altered when the concentration of 16:0-22:6 PC is increased by DHA supplementation.  相似文献   

9.
The ether-linked phosphatidylcholines 1-eicosyl-2-dodecyl-rac-glycero-3-phosphocholine (EDPC) and 1-dodecyl-2-eicosyl-rac-glycero-3-phosphocholine (DEPC) have been investigated by differential scanning calorimetry (DSC) and X-ray diffraction. DSC of hydrated EDPC shows a single endothermic transition at 34.8 degrees C (delta H = 11.2 kcal/mol) after storage at -4 degrees C while DEPC shows three endothermic transitions at 7.7 and approximately 9.0 degrees C (combined delta H approximately 0.4 kcal/mol) and at 25.2 degrees C (delta H = 4.7 kcal/mol). Both the single transition of EDPC and the two higher temperature transitions of DEPC are reversible, while the approximately 7.7 degrees C transition of DEPC increases in enthalpy on low-temperature incubation. At 23 degrees C, X-ray diffraction of hydrated EDPC shows a sharp reflection at 4.2 A together with lamellar reflections corresponding to a bilayer periodicity, d = 56.2 A. Electron density profiles derived from swelling experiments show a phosphate-phosphate intrabilayer distance, dp-p, of 36 A at all hydrations. This, together with calculated lipid thickness and molecular area considerations, suggests an interdigitated, three chains per head group, bilayer gel phase, L beta*, with no hydrocarbon chain tilt. This is structurally analogous to the bilayer gel phase of hydrated 18:0/10:0 ester PC [McIntosh, T. J., Simon, S. A., Ellington, J. C., Jr., & Porter, N. A. (1984) Biochemistry 23, 4038]. In contrast, DEPC at -4 degrees C shows an L beta' bilayer gel phase with tilted hydrocarbon chains (d = 61.1 A). However, this transforms above 9 degrees C to an interdigitated, triple-chain, L beta* bilayer gel phase (identical with that of EDPC) with d = 56.6 A and a phosphate-phosphate distance of 36 A. Above their respective chain melting transitions, Tm, EDPC and DEPC exhibit liquid-crystalline L alpha bilayer phases with d = 64.5 and 65.0 A at 55 and 45 degrees C, respectively. The ability of both EDPC and DEPC to form triple-chain interdigitated gel-state bilayers suggests that the conformational inequivalence at the sn-1 and sn-2 positions is less pronounced in the ether-linked PCs compared to the ester-linked PCs, where only one of the positional isomers, e.g., 18:0/10:0 PC but not 10:0/18:0 PC, forms the triple-chain structure (J. Mattai, unpublished results). Thus, a different conformation around the glycerol is predicted for ether-linked PC compared to ester-linked PC.  相似文献   

10.
We have determined the average location and dynamic reorientation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) attached to a C12 sn-2 chain of a phosphatidylserine (PS) analogue (C12-NBD-PS) in zwitterionic phosphatidylcholine (PC) and negatively charged phosphatidylserine (PS) host membranes. (1)H magic angle spinning nuclear Overhauser enhancement spectroscopy indicates a highly dynamic reorientation of the aromatic molecule in the membrane. The average location of NBD is characterized by a broad distribution function along the membrane director with a maximum indicating the location of the probe in the lipid/water interface of the lipid membrane. This behavior can be explained by a backfolding of the sn-2 chain towards the aqueous phase. Small differences in the distribution profiles of the NBD group along the membrane normal between PC and PS host membranes were found: in a PC host membrane, the NBD distribution has its maximum in the glycerol region; in a PS host membrane, NBD resides mostly in the upper chain region. These differences may be accounted for by packing differences in the PC versus PS host membranes. As seen by (2)H NMR order parameters, PS bilayers show a much higher packing density compared to PC membranes. Consequently, backfolding of the sn-2 chain with the NBD group attached causes a larger decrease of molecular order of the sn-1 chain in PS than in PC membranes. The broad distributions obtained for lipid chain attached NBD molecules reflect the motional freedom and molecular disorder in the liquid-crystalline lipid membrane.  相似文献   

11.
Analysis of lipids in salivary glands of the lone star tick, Amblyomma americanum, demonstrated that arachidonic acid (20:4, n-6) comprises 8% of all fatty acids identified by gas chromatography. The occurrence of arachidonic acid and other C20 polyunsaturated fatty acids in tick salivary glands was confirmed by gas chromatography-mass spectrometry. Arachidonate is located entirely in the phospholipid fraction and is associated exclusively with phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Salivary glands stored and frozen for several months had a similar lipid composition as freshly dissected salivary glands, with the exception of a small amount of free arachidonic acid and an increase in lysophosphatidylcholine. Incubation of salivary gland homogenates with snake venom phospholipase A2 showed that most saturated fatty acids are esterified in the sn-1 position of PC and PE, with the unsaturated fatty acids in the sn-2 position. Approximately 75% of arachidonic acid is in the sn-2 position of PC and PE, adding support to the hypothesis that arachidonic acid is released into the cytoplasm after activation of a phospholipase A2 for subsequent metabolism to prostaglandins and/or other eicosanoids. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Rat liver 60-kDa lysophospholipase-transacylase catalyzes not only the hydrolysis of 1-acyl-sn-glycero-3-phosphocholine, but also the transfer of its acyl chain to a second molecule of 1-acyl-sn-glycero-3-phosphocholine to form phosphatidylcholine (H. Sugimoto, S. Yamashita, J. Biol. Chem. 269 (1994) 6252-6258). Here we report the detailed characterization of the transacylase activity of the enzyme. The enzyme mediated three types of acyl transfer between donor and acceptor lipids, transferring acyl residues from: (1) the sn-1 to -1(3); (2) sn-1 to -2; and (3) sn-2 to -1 positions. In the sn-1 to -1(3) transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1(3) positions of glycerol and 2-acyl-sn-glycerol, producing 1(3)-acyl-sn-glycerol and 1,2-diacyl-sn-glycerol, respectively. In the sn-1 to -2 transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to not only the sn-2 positions of 1-acyl-sn-glycero-3-phosphocholine, but also 1-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. 1-Acyl-sn-glycero-3-phospho-myo-inositol and 1-acyl-sn-glycero-3-phosphoserine were much less effectively transacylated by the enzyme. In the sn-2 to -1 transfer, the sn-2 acyl residue of 2-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1 position of 2-acyl-sn-glycero-3-phosphocholine and 2-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. Consistently, the enzyme hydrolyzed the sn-2 acyl residue from 2-acyl-sn-glycero-3-phosphocholine. By the sn-2 to -1 transfer activity, arachidonic acid was transferred from the sn-2 position of donor lipids to the sn-1 position of acceptor lipids, thus producing 1-arachidonoyl phosphatidylcholine. When 2-arachidonoyl-sn-glycero-3-phosphocholine was used as the sole substrate, diarachidonoyl phosphatidylcholine was synthesized at a rate of 0.23 micromol/min/mg protein. Thus, 60-kDa lysophospholipase-transacylase may play a role in the synthesis of 1-arachidonoyl phosphatidylcholine needed for important cell functions, such as anandamide synthesis.  相似文献   

13.
The influence of membrane surface charge on the conformation of the choline head group of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) was investigated in the gel and liquid-crystalline states by using 2H NMR spectroscopy of specifically choline-deuterated DMPC. The surface charge was made progressively more negative through admixture of various proportions of 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG). All membrane compositions showed nearly identical gel- to liquid-crystalline-phase transitions centered about 24 degrees C. The gel-state 2H NMR spectra from all three choline head-group deutero-labeling positions (alpha, beta, and gamma) decreased in intensity and broadened relative to the liquid-crystalline-state spectra. These effects were not so severe that they masked the overriding influence of surface charge on the choline head-group conformation as reflected in the 2H NMR spectra. Thus, in both the liquid-crystalline and gel states, the presence of negative surface charge caused the quadrupole splitting from DMPC-alpha-d2 to increase while causing that from DMPC-beta-d2 and DMPC-gamma-d9 to decrease. These effects were progressive with increasing density of negative surface charge. Correlation plots of the quadrupole splittings obtained, under otherwise identical conditions, from different deutero-labeling positions were linear over most of the range of surface charge densities, in both the liquid-crystalline and gel states, for all three correlations (alpha-beta, beta-gamma, and alpha-gamma). At extreme surface charge densities, the alpha-beta and alpha-gamma correlations showed biphasic behavior in that, at high surface charge densities, the change in the quadrupole splittings from DMPC-alpha-d2 became less pronounced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The molecular species of highly purified phosphatidylinositol from soybeans were determined as an aid in the investigation of the mechanism of their reported selective cytotoxicity towards tumor cells. Unlike the animal phosphatidylinositol, which contains predominantly stearic acid in the sn-1 and arachidonic in the sn-2 position (18:0 20:4), the soybean phosphatidylinositol was found to contain mainly linoleic acid in the sn-2 position and palmitic (16:0 18:2), stearic (18:0 18:2) and linoleic (18:2 18:2) acids in the sn-1 position of its molecular species.  相似文献   

15.
The site of synthesis of 1,2-disaturated-(diacyl)-sn-glycero-3-phosphocholine (Sat2PC) in mouse alveolar type II cell adenomas has been studied by conducting pulse-chase experiments. Isolation of microsomal and lamellar body fractions from adenomas after a 20-min pulse with [methyl-3H]choline demonstrates that Sat2PC first appears in the microsomal fraction, and after a short lag subsequently appears in the lamellar body fraction. The kinetics of labeling of Sat2PC are consistent with the microsomal membranes functioning as the subcellular site of synthesis for this pulmonary surfactant phospholipid. Short term labeling experiments with [9,10-3H]palmitate demonstrate that this fatty acid is incorporated into the sn-2 position of Sat2PC at a faster rate than its incorporation into the sn-1 position. This finding indicates that the synthesis of Sat2PC occurs by a deacylation-reacylation mechanism.  相似文献   

16.
Studies involving pharmacologic inhibition or transient reduction of Group VIA phospholipase A2 (iPLA2beta) expression have suggested that it is a housekeeping enzyme that regulates cell 2-lysophosphatidylcholine (LPC) levels, rates of arachidonate incorporation into phospholipids, and degradation of excess phosphatidylcholine (PC). In insulin-secreting islet beta-cells and some other cells, in contrast, iPLA2beta signaling functions have been proposed. Using retroviral vectors, we prepared clonal INS-1 beta-cell lines in which iPLA2beta expression is stably suppressed by small interfering RNA. Two such iPLA2beta knockdown (iPLA2beta-KD) cell lines express less than 20% of the iPLA2beta of control INS-1 cell lines. The iPLA2beta-KD INS-1 cells exhibit impaired insulin secretory responses and reduced proliferation rates. Electrospray ionization mass spectrometric analyses of PC and LPC species that accumulate in INS-1 cells cultured with arachidonic acid suggest that 18:0/20:4-glycerophosphocholine (GPC) synthesis involves sn-2 remodeling to yield 16:0/20:4-GPC and then sn-1 remodeling via a 1-lyso/20:4-GPC intermediate. Electrospray ionization mass spectrometric analyses also indicate that the PC and LPC content and composition of iPLA2beta-KD and control INS-1 cells are nearly identical, as are the rates of arachidonate incorporation into PC and the composition and remodeling of other phospholipid classes. These findings indicate that iPLA2beta plays signaling or effector roles in beta-cell secretion and proliferation but that stable suppression of its expression does not affect beta-cell GPC lipid content or composition even under conditions in which LPC is being actively consumed by conversion to PC. This calls into question the generality of proposed housekeeping functions for iPLA2beta in PC homeostasis and remodeling.  相似文献   

17.
Oxidation of 1-O-hexadec-1'-enyl-arachidonoyl glycerophosphocholine (16:0p/20:4-GPC) by hydroxyl radical generated from Cu(II)/H(2)O(2) was found to yield major products corresponding to free carboxylic acids of 5-hydroxyeicosatetraenoic acid and several 5, 12-dihydroxyeicosatetraenoic acid. These products were characterized by electrospray tandem mass spectrometry based upon characteristic product ion spectra, as well as HPLC retention time. Several products were found to be biologically active in terms of elevating neutrophil intracellular calcium ion concentration. When mixed micelles of 16:0p/20:4-GPC were treated with Cu(II)/H(2)O(2), oxidation of the arachidonate esterified to the plasmalogen glycerophosphocholine lipid resulted in the most abundant products oxidized at carbon-5 of esterified arachidonate, but free carboxylic acid products were not formed. The mechanism of formation of these oxidized products is suggested to involve a cooperation between the sn-1 vinyl ether substituent and the arachidonoyl substituent at sn-2 of the glycerophospholipid to direct oxidation of the arachidonate ester at carbon-5. Since arachidonic acid is found in high abundance within most plasmalogen glycerophospholipids, the susceptibility of plasmalogens to free radical oxidation likely involves concomitant oxidation of the arachidonyl radyl group esterified at the sn-2 position.  相似文献   

18.
Biliary cholesterol secretion is ordinarily tightly coupled to phosphatidylcholine (PC) secretion. Bile PCs are distinct in composition and predominantly composed of molecular species with 16:0 in the sn-1 position and 18:2 and 18:1 in the sn-2 position. In an attempt to acutely change the composition of biliary PCs and to assess the effect of a change in PCs on biliary cholesterol secretion, isolated livers were perfused with a variety of single free fatty acids. Rat livers with bile duct cannulas were perfused with a recirculating medium, taurocholate (40 mumol/h), and albumin-bound 16:1, 17:1, 18:1, 20:1, 18:2, 20:4, or 20:5 fatty acids (90 mumol/h) for 2 h. Biliary lipid secretion was measured and bile and liver PC compositions were compared at the start and end of perfusion. Results showed 1) greater utilization of shorter chain than longer chain fatty acids for bile PC formation (16:1 greater than 17:1 greater than 18:2 or 18:1 greater than 20:5, 20:4 or 20:1); 2) no similar pattern of FA utilization for liver PC formation; 3) preferentially greater incorporation of fatty acids into bile PCs compared to liver PCs when perfused fatty acids were used for esterification at both sn-1 and sn-2 positions of PC (to form diunsaturated PCs); and 4) increased biliary secretion of cholesterol relative to PC only when the population of PCs that was newly formed included more hydrophilic molecular species of PC than are present in native bile (that was observed only with perfusion of 16:1). Changes in biliary PC secretion or cholesterol/PC secretion occurred independently of any change in bile salt secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In order to study the role of very low density lipoproteins (VLDL) and low density lipoproteins (LDL) in determining the molecular species composition of phosphatidylcholine (PC) and the specificity of lecithin:cholesterol acyltransferase (LCAT) in human plasma, we studied the PC species composition in plasma from abetalipoproteinemic (ABL) and control subjects before and after incubation at 37 degrees C. The ABL plasma contained significantly higher percentages of sn-2-18:1 species (16:0-18:1, 18:0-18:1, and 18:1-18:1) and lower percentages of sn-2-18:2 species (16:0-18:2, 18:0-18:2, and 18:1-18:2) as well as sn-2-20:4 species (16:0-20:4, 18:0-20:4, and 18:1-20:4). Similar abnormalities were found in the PC of ABL erythrocytes, while the PE of the erythrocytes was less affected. The relative contribution of various PC species towards LCAT reaction in ABL plasma was significantly different from that found in normal plasma. Thus, while 16:0-18:2 and 16:0-18:1 contributed, respectively, 43.8% and 15.9% of the total acyl groups used for cholesterol esterification in normal plasma, they contributed, respectively, 21.5% and 37.9% in ABL plasma. The relative contribution of 16:0-20:4 was also significantly lower in ABL plasma (4.7% vs. 9.0% in normal), while that of 16:0-16:0 was higher (6.4% vs. 0.5%). However, the selectivity factors of various species (percent contribution/percent concentration) were not significantly different between ABL and normal plasma, indicating that the substrate specificity of LCAT is not altered in the absence of VLDL and LDL. Incubation of ABL plasma in the presence of normal VLDL or LDL resulted in normalization of its molecular species composition and in the stimulation of its LCAT activity. Addition of LDL, but not VLDL, also resulted in the activation of lysolecithin acyltransferase (LAT) activity. The incorporation of [1-14C]palmitoyl lysoPC into various PC species in the presence of LDL was similar to that observed in normal plasma, with the 16:0-16:0 species having the highest specific activity. These results indicate that the absence of apoB-containing lipoproteins significantly affects the molecular species composition of plasma PC as well as its metabolism by LCAT and LAT reactions.  相似文献   

20.
The purpose of this study was to test the hypothesis that lipid fluidity regulates lecithin:cholesterol acyltransferase (LCAT) activity. Phosphatidylcholine (PC) species were synthesized that varied in fluidity by changing the number, type (cis vs. trans), or position of the double bonds in 18 or 20 carbon sn-2 fatty acyl chains and recombined with [(3)H]cholesterol and apolipoprotein A-I to form recombinant high density lipoprotein (rHDL) substrate particles. The activity of purified human plasma LCAT decreased with PC sn-2 fatty acyl chains containing trans versus cis double bonds and as double bonds were moved towards the methyl terminus of the sn-2 fatty acyl chain. The decrease in LCAT activity was significantly correlated with a decrease in rHDL fluidity (measured by diphenylhexatriene fluorescence polarization) for PC species containing 18 carbon (r(2) = 0.61, n = 18) and 20 carbon (r(2) = 0.93, n = 5) sn-2 fatty acyl chains. rHDL were also made containing 10% of the 18 carbon sn-2 fatty acyl chain PC species and 90% of an inert PC ether matrix (sn-1 18:1, sn-2 16:0 PC ether) to normalize rHDL fluidity. Even though fluidity was similar among the PC ether-containing rHDL, the order of PC reactivity with LCAT was significantly correlated (r(2) = 0.71) with that of 100% PC rHDL containing the same 18 carbon sn-2 fatty acyl chain species, suggesting that PC structure in the active site of LCAT determines reactivity in the absence of measurable differences in bilayer fluidity. We conclude that PC fluidity and structure are major regulators of LCAT activity when fatty acyl chain length is constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号