首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of inoculum size, dispersed phase volume and substrate concentration on the batch growth of Candida lipolytica are investigated in a model system composed of n-hexadecane dissolved in dewaxed gas oil. Tabular values and parameters are presented for 16 different experiments. All of the batch growth curves exhibited a linear growth region with the length of the region ranging from 1.5 to 9.5 hours. The rate of linear growth varied both with change in dispersed phase volume and initial dispersed phase substrate concentration. A qualitative analysis of the results is presented and possible explanations for the observed linear growth rates are discussed.  相似文献   

2.
The effects of dispersed phase volume and temperature on the batch growth of Candida lipolytica on gas oil are investigated. Growth parameters are presented for two sets of experiments. The shape of growth curves was basically similar to the system composed of n-hexadecane dissolved in dewaxed gas oil, in spite of the complex nature of the substance. All of the batch growth curves exhibited a linear growth region. The rate of linear growth and its length varied with change in dispersed phase volume. The effect of temperature on growth rate was investigated for temperatures ranging from 23°C to 34°C. The results show a smaller activation energy during linear growth than during the early stages of batch growth. These results are analyzed from the viewpoint of growth models presented previously. The results indicate that growth at drop surfaces is important and that segregation effects may be important.  相似文献   

3.
The enormous versatility of plants has continued to provide the impetus for the development of plant tissue culture as a commercial production strategy for secondary metabolites. Unfortunately problems with slow growth rates and low products yields, which are generally non-growth associated and intracellular, have made plant cell culture-based processes, with a few exceptions, economically unrealistic. Recent developments in reactor design and control, elicitor technology, molecular biology, and consumer demand for natural products, are fuelling a renaissance in plant cell culture as a production strategy. In this review we address the engineering consequences of the unique characteristics of plant cells on the scale-up of plant cell culture.Abbreviations a gas-liquid interfacial area per volume - C dissolved oxygen concentration - C* liquid phase oxygen concentration in equilibrium with the partial pressure of oxygen in the bulk gas phase - KL overall mass transfer coefficient - kL liquid film mass transfer coefficient - mO2 cell maintenance coefficient for oxygen - OTR oxygen transfer rate - OUR oxygen uptake rate - pO2 partial pressure of oxygen - STR stirred-tank reactor - v.v.m. volume of gas fed per unit operating volume of reactor per minute - X biomass concentration - Yx/O2 biomass yield coefficient for oxygen - specific growth rate  相似文献   

4.
Photorhabdus luminescens, a bacterial symbiont of entomoparasitic nematodes, was cultured in a 10 L bioreactor. Cellular density and bioluminescence were recorded and volumetric oxygen transfer coefficient (kLa) and specific oxygen transfer rates were determined during the batch process. Exponential phase of the bacterium lasted for 20 h, showing a maximum specific growth rate of 0.339 h?1 in a defined medium. Bioluminescence peaked within 21h, and was maintained until the end of the batch process (48 h). The specific oxygen uptake rate (SOUR) was high during both lag and early exponential phase, and eventually reached a stable value of 0.33 mmol g?1 h?1 during stationary phase. Maintenance of 200 rpm agitation and 1.4 volume of air per volume of medium per minute (vvm) aeration, gave rise to a kLa value of 39.5 h?1. This kLa value was sufficient to meet the oxygen demand of 14.4 g L?1 (DCW) biomass. This research is particularly relevant since there are no reports available on SOURs of symbiotic bacteria or their nematode partners. The insight gained through this study will be useful during the development of a submerged monoxenic culture of Heterorhabditis bacteriophora and its symbiotic bacterium P. luminescens in bioreactors.  相似文献   

5.
A new correlation is given for the prediction of the volumetric coefficient for mass transfer (KLa) in stirred tanks from dispersed gas bubbles to basal salt solutions of ionic strengths representative of fermentation media. The correlation includes the effects of both the operating parameters (agitation power per unit volume and gas superficial velocity) and the physicochemical properties of the system: interfacial tension, viscosity, density, diffusion, coefficient and, in particular, ionic strength. The effect of the latter was found to be most significant in the Newtonian systems of water-like viscosity investigated; no previous correlations have included the effect of ionic strength. KLa values were determined by using a dissolved oxygen probe to monitor the steady-state oxygen tension in continuous flow experiments, and/or the rate of change of oxygen tension in unsteady-state semibatch experiments. In the latter cases, results were computed by a nonlinear, least squares computer program which fitted the experimental data to a model of probe transient response characteristics. The general applicability of the model and the computational procedure was verified by comparing the results to those obtained with the same electrolyte solution in the steady-state mode. The experiments were run over a wide range of agitation power inputs, including those typical of both soluble- and insoluble-substrate fermentations. The correlation appears to be valid for both oxygen mass transfer with and without homogeneous chemical reaction in the liquid phase; in the former case, for example, sulfite oxidation, knowledge of the chemical reaction enhancement factor is required. In addition to predicting oxygen transfer capabilities, the correlation may be used for other sparingly soluble gases of interest in fermentation systems, such as methane, hydrogen, and carbon dioxide.  相似文献   

6.
The cholesterol lowering drug, Lovastatin (Mevacor), acts as an inhibitor of HMGCoA reductase, and is produced from an Aspergillus terreus fermentation.Pilot scale studies were carried out in 800 liter fermenters to determine the effects of cell morphology on the oxygen transport properties of this fermentation. Specifically, parallel fermentations giving (i) filamentous mycelial cells, and (ii) discrete mycelial pellets, were quantitatively characterized in terms of broth viscosity, availability of dissolved oxygen, oxygen uptake rates and the oxygen transfer coefficient under identical operating conditions.The growth phase of the fermentation, was operated using a cascade control strategy which automatically changed the agitation speed with the goal of maintaining dissolved oxygen at 50% saturation. Subsequently stepwise changes were made in agitation speed and aeration rate to evaluate the response of the mass transfer parameters (DO, OUR, and k L a). The results of these experiments indicate considerable potential advantages to the pellet morphology from the standpoint of oxygen transport processes.List of Symbols DO % sat. Dissolved oxygen concentration - k L a h–1 Gas-liquid mass transfer coefficient - OUR mmol/dm3h Oxygen uptake rate - P/V KW/m3 Agitator power per unit volume - V s m/s Superficial air velocity - app cP Apparent viscosity  相似文献   

7.
The effect of dispersed n -dodecane or n -hexadecane on the air-to-aqueous phase overall volumetric oxygen transfer coefficient in a simulated (cell-free) stirred-tank fermentor is described. The oil volume fraction ranged from zero to 0.10; the ionic strength of the aqueous phases was varied from 0 to 0.45. The air-to-aqueous phase coefficients in both oil-free (KLa) and oil-bearing (KLa*) systems were evaluated from unsteady-state experiments using a membrane-covered probe to follow the aqueous phase dissolved oxygen tension. For all systems studied, KLa*/KLa was found to be independent of P/V and vs for all practical purposes. However, for a particular aqueous phase and at a given P/V and vs, the ratio KLa*KLa generally differed from unity. Depending on the combination of hydrocarbon type and volume fraction and the aqueous-phase ionic strength employed, the dispersed hydrocarbon may, in some cases, reduce the rate of oxygen transfer and in others enhance it relative to that of the corresponding oil-free gas–liquid dispersion. Enhancement of the air-to-aqueous transfer rate by such negative spreading coefficient hydrocarbons has not been reported previously.  相似文献   

8.
9.
Three 5 l working volume fermenters were used to investigate the growth of the yeast Kluyveromyces fragilis in acid cheese whey under ambient temperature in order to assess the specific growth rate and yield, the lactose and oxygen uptake rates during the various phases of batch culture, the effect of increasing temperature on the various kinetic parameters, and the need for a cooling unit for single cell production batch systems. The initial dissolved oxygen in the medium was 5.5 mg l–1 and the pH was maintained at 4.5. The observed lag phase, specific growth rate and maximum cell number were 4 h, 0.2 h–1 and 8.4 × 108 cells ml–1, respectively. About 99% of the lactose in cheese whey was utilized within 20 h, 85% during the exponential growth phase. The specific lactose utilization rates by K. fragilis were 0.20 × 10–12, 1.457 × 10–12, 0.286 × 10–12 and 0.00 g lactose cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The dissolved oxygen concentration in the medium decreased as the cell number increased. The lowest oxygen concentration of 1.2 mg l–1 was observed during the stationary phase. The volumetric oxygen transfer coefficient was 0.41 h–1 and the specific oxygen uptake rates were 0.32 × 10–12, 2.14 × 10–12, 0.51 × 10–12 and 0.003 × 10–12 mg O2 cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The maximum temperature recorded for the medium was 33 °C, indicating that a cooling unit for batch production of single cell protein at ambient temperature is not needed for this type of bioreactor. The increase in medium temperature affected the cell growth and the lactose and oxygen uptake rates.  相似文献   

10.
Effects of agitation and aeration rates on volumetric oxygen transfer coefficient and oxygen uptake rate of a riboflavin broth containing Ashbya gossypii were investigated in three batch, sparged, and agitated fermentors having the working volumes of 0.42, 0.85, and 2.5 l. The change of oxygen uptake rate with time at 250 rev min−1 stirring and vvm aeration rates was shown. The volumetric oxygen transfer coefficients and maximum oxygen uptake rates obtained have been correlated to mechanical power inputs per unit volume of the fermentation broth and the superficial air velocities.  相似文献   

11.
Summary Batch cultures of Medicago sativa cells have been carried out in the dark under aerobic conditions using lactose as the sole carbon source. The stoichiometric analysis has been correlated with both the oxygen demand and the cell productivity in an oxygen-limited cultivation. The minimum oxygen transfer has been estimated to be 12.5 h–1, i.e., 0.3 v.v.m; this initial aeration rate led to cell necrosis. Starting with a low oxygen transfer coefficient kL·a and increasing the air flow rate during the course of fermentation gave an exponential growth phase. The maximum specific growth rate was 0.012 h–1 and the growth yield was 0.43 g.d.w./g. of lactose. On the basis of the mass-balance relation the maintenance coefficient and the maximum growth yield have been calculated.  相似文献   

12.
Regeneration of atmosphere is an essential component in a long-term manned mission in space. A compact and reliable photobioreactor (PBR) system with an efficient gas transfer module is required for this purpose. Light emitting diodes (LEDs) provide an ideal light source for a small and maintenance-free PBR. Lack of gravity in space prevents the use of sparging, one of the most efficient gas exchange processes. As an alternative gas transfer device, a hollow fiber gas exchanger was selected and examined for possible future application. An LED-based PBR with a hollow fiber external gas exchanger supported high-density algal cultures comparable to a PBR with internal sparging (>2×109cells/ml, or over 6% v/v). The growth kinetics in both types of PBRs were found to be identical and the oxygen production rate was about the same when the effect of the dark volume in the external hollow fiber gas exchanger was taken into account. To quantitatively describe the effect of non-illuminated volume inside a hollow fiber gas exchange unit, two parameters were introduced: ϵ, which was the ratio of illuminated volume to dark volume in the entire PBR system, and Φ, defined as the ratio of the specific dark respiration rate to the maximum specific oxygen production rate. The decrease in net oxygen production in a PBR with an external gas exchanger was quantitatively predicted by a simple model using these two parameters.  相似文献   

13.
  For a mass-transfer-limited system, it was demonstrated that the volumetric ethene transfer coefficient (k l a) from gas to water could be enhanced by dispersing adequate amounts of a water-immiscible organic liquid, namely the perfluorocarbon FC40, in the aqueous phase. When 26% (v/v) FC40 was dispersed in a culture of Mycobacterium parafortuitum an enhancement of k l a, calculated on a total liquid volume basis, of 1.8 times was found. Steady-state experiments in the absence of microorganisms, however, showed a 1.2-fold enhancement of k l a at 18.5% (v/v) FC40. At all FC40 volume fractions tested, enhancement factors with cells were higher than enhancements without cells; apparently the microorganisms or their excretion products affected the interfacial areas or characteristic phase dimensions. Received: 4 December 1995 / Received revision: 7 June 1996 / Accepted: 10 June 1996  相似文献   

14.
The scale-down procedure seems an adequate tool in the design, optimization and scale-up fermentation processes. The first step in this procedure is a theoretical analysis, called process analysis, which is based on characteristic times of the mechanisms which may influence the performance of the bioreactor. This analysis must give information about the behaviour of large and small scale fermentation processes. At a small scale a verification of the results of such an analysis of the fed-batch baker's yeast production is carried out.In this paper a comparison of calculated and measured characteristic times of liquid mixing and mass transfer is presented. It was concluded that the literature correlations give a rough estimation of the characteristic times and can be used in the process analysis. Depending on the kind of sparger, the medium and the scale of the reactor, more knowledge is needed about bubble coalescence in fermentation media.The volumetric oxygen transfer coefficient increased when the biomass concentration increased. Probably this is caused by the interaction between biomass and the anti-foaming agent used.List of Symbols C kg/m3 concentration - D m diameter - m2/s effective dispersion coefficient - d m holes of the sparger - g m/s2 gravitational acceleration - H m height - k L a s–1 volumetric mass transfer coefficient based on the liquid volume - L m length - m kg/kg gas liquid distribution coefficient - OTR kg/(m3 · s) oxygen transfer rate - OUR kg/(m3 · s) oxygen uptake rate - t s time - s m/s superficial gas flow rate - m length - s time constant - g m3/s gas flow rate Indices 0 value at t=0 - cal calculated - e value at t=t (end) - g gas phase - in flow going to the fermentor - l liquid phase - m mixing - mt mass transfer - O 2 oxygen - out flow coming out the fermentor  相似文献   

15.
The oxygen transfer dynamics in a pilot plant external air-lift bioreactor (EALB) during the cultivation of mycelial biomass were characterized with respect to hydrodynamic parameters of gas holdup (), oxygen transfer coefficient (KLa) and superficial gas velocity (U g), and dissolved oxygen (DO). An increased flow rate of air supply was required to meet the increased oxygen demand with mycelial biomass growth. Consequently, an increase in air flow rate led to an increase in , KLa and the DO level. The enhancement of oxygen transfer rate in the cultivated broth system, however, was limited with highly increased viscosity of the mycelial broth. An increase in air flow rate from 1.25 to 2.00 v/v/m resulted in a low increment of oxygen transfer. The newly designed pilot plant EALB with two air spargers significantly improved processing reliability, aeration rate and KLa. The pilot plant EALB process, operated under a top pressure from 0 to 1.0 bars, also demonstrated a significant improvement of oxygenation efficiency by more than 20% in DO and KLa. The performance of the two sparger EALB process under top pressure demonstrated an efficient and economical aerobic system with fast mycelial growth and high biomass productivity in mycelial biomass production and wastewater treatment.  相似文献   

16.
Production of 2,3-butanediol by Klebsiella oxytoca is influenced by the degree of oxygen limitation. During batch culture studies, two phases of growth are observed: energy-coupled growth, during which cell growth and oxygen supply are coupled; and, energy-uncoupled growth, which arises when the degree of oxygen limitation reaches a critical value. Optimal 2,3-butanediol productivity occurs during the energy-coupled growth phase. In this article, a control system which maintains the batch culture at a constant level of oxygen limitation in the energy-coupled growth regime has been designed. Control, which involves feedback control on the oxygen transfer coefficient, is achieved by continually increasing the partial pressure of oxygen in the feed gas, which in turn continually increases the oxygen transfer rate. Control has resulted in a balanced state of growth, a repression of ethanol formation, and an increase in 2,3-butanediol productivity of 18%. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
A pilot scale airlift reactor with multiple net draft tubes was developed to improve oxygen transfer in the reactor. The reactor was 0.29 m in diameter and 2 m height. A steadystate sulfite oxidation method was applied to determine an overall volumetric mass transfer coefficient. Oxygen transfer of the proposed airlift reactor can be 60–100% higher than that of bubble columns under the same operating conditions.List of Symbols C * mol·dm–3 saturated concentration of dissolved oxygen - C L mol·dm–3 bulk concentration of dissolved oxygen - G mol/min nitrogen flow rate - k L a hr–1 the volumetric gas-liquid mass transfer coefficient - Mo 2 g/mol molecular weight of oxygen - OTR g/min the oxygen transfer rate - U g cm/s superficial air velocity - V L dm3 volume of the liquid phase - in oxygen mole ratio in the inlet gas - out oxygen mole ratio in the outlet gas  相似文献   

18.
Summary The effect of soybean oil on the volumetric oxygen transfer coefficient during the cultivation ofAerobacter aerogenes cells is presented. For our aeration-agitation conditions (0.278 vvm and 500 rpm), it has been demonstrated that the use 19% (v/v) of soybean oil enabled a 1.85-fold increase of thek l a coefficient (calculated on a per liter aqueous phase basis). For smaller volumetric oil fractions,k L a increased linearly with the oil loading. Because of the oxygen-vector properties of soybean oil, this oil is able to significantly increase thek L a of a bioreactor.Nomenclature C*, C saturation and actual dissolved oxygen concentrations respectively (g/m3) - KLa volumetric oxygen transfer coefficient (h–1) - KLainitial k La measured before the oil addition (h–1) - MO2 molar mass of oxygen (dalton) - N oxygen transfer rate (g/m3. h) - PO2. PN2 partial pressures ofO 2 andN 2 in the gas (atm) - PH2OT partial pressure of water in air at the temperatureT (atm) - PT total pressure (atm) - Q0 volumetric flow rate of outlet air before seeding (m3/h) - Sp spreading coefficient (dynes/cm) - T absolute temperature of outlet gas (K) - Vi volume of the liquidi in the fermentor (m3) - VM molar volume at 273 K and 1 atm (m3/mole) - ij interfacial tension betweeni andj componants (dynes/cm) - v volumetric fraction of the oil (v/v) - G gas - O oil - W water - i inlet - o outlet  相似文献   

19.
Parameter estimation studies have been conducted employing mathematical models developed previously by the investigators and experimental data collected by the last author. A batch fermentation process in which Candida lipolytica were cultured on n-hexadecane dissolved in dewaxed gas oil was employed to obtain the experimental data. The kinetic data from a number of batch experiments conducted at different initial substrate concentrations and different dispersed phase volume fractions were analyzed assuming that, the basic model parameters (maximum specific growth rate, saturation constant, substrate phase equilibrium constant, adsorption constant, desorption constant, etc.) did not change from experiment to experiment. The Gauss-Newton method with modification by Greenstadt, Eisenpress, Bard, and Carroll was used to minimize the conventional sum of squares criterion on the IBM 300/50 computer. The individual confidence intervals were obtained for each individual parameter. Tin- models were compared employing the F-test for equality of variances and an analysis of residuals. For the two best models, the estimated parameter values were compared with available experimental information. The results showed good agreement between the experimental data and the values predicted by the mathematical models. The results presented in this work did suggest that growth on small segregated drops may be more important than continuous phase growth on dissolved substrate.  相似文献   

20.
Trichoderma reesei QM 9123 has been grown in batch culture in a 10 liter stirred fermentor, at a temperature of 30°C and pH 4.0. The fermentor was operated at a single stirrer speed of 400 rpm and air rate of 1 v/v/m. The effect of four inoculum sizes (0.5, 1.0, 3.0 and 5.0%) on the growth pattern and the aeration profiles was examined. Logarithmic growth of the fungus was observed. The aeration profile changed with inoculum size and at 5.0%, it was found that the oxygen uptake rate was controlled by the oxygen supply rate, during which the oxygen tension was zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号