首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neurons destined to form several precerebellar nuclei are generated in the dorsal neuroepithelium (rhombic lip) of caudal hindbrain. They form two ventrally directed migratory streams, which behave differently. While neurons in the superficial migration migrate in a subpial position and cross the midline to settle into the contralateral hindbrain, neurons in the olivary migration travel deeper in the parenchyma and stop ipsilaterally against the floor plate. In the present study, we compared the behavior of the two neuronal populations in an organotypic culture system that preserves several aspects of their in vivo environment. Both migrations occurred in mouse hindbrain explants dissected at E11.5 even when the floor plate was ablated at the onset of the culture period, indicating that they could rely on dorsoventral cues already distributed in the neural tube. Nevertheless, the local constraints necessary for the superficial migration were more specific than for the olivary migration. Distinct chemoattractive and chemorespulsive signal were found to operate on the migrations. The floor plate exhibited a strong chemoattractive influence on both migrations, which deviated from their normal path in the direction of ectopic floor plate fragments. It was also found to produce a short-range stop signal and to induce inferior olive aggregation. The ventral neural tube was also found to inhibit or slow down the migration of olivary neurons. Interestingly, while ectopic sources of netrin were found to influence both migrations, this effect was locally modulated and affected differentially the successive phases of migration. Consistent with this observation, while neurons in the superficial migration expressed the Dcc-netrin receptor, the migrating olivary neurons did not express Dcc before they reached the midline. Our observations provide a clearer picture of the hierarchy of environmental cues that influence the morphogenesis of these precerebellar nuclei.  相似文献   

2.
Neuronal migration is required for the establishment of specific neural structures, such as layers and nuclei. Neurons migrate along specific migratory routes toward their final destinations, sometimes across long distances. However, the cellular and molecular interactions that control neuronal migration are largely unknown. Here, we examined the mechanism underlying the transmedian migration of precerebellar neurons using a flat whole-mount preparation of the rat embryo. These neurons were initially attracted by the floor plate (FP) at the ventral midline. However, after crossing the midline, they lost their responsiveness to the FP and became attracted by the alar plate (AP). Although the loss of responsiveness to FP cues was caused by an encounter of migrating cells with the FP, the gain of responsiveness to AP cues occurred irrespective of their encounter with the FP. These results identify a crucial change in the response of migrating cells to attractive guidance cues during the transmedian migration of precerebellar neurons.  相似文献   

3.
The migration, cytoarchitectonic segregation and neuritogenesis of the inferior olive (ION) and lateral reticular (LRN) neurons are described in the rat. Generated in the same primary precerebellar neuroepithelium, at embryonic days 12-13 (E12-E13) for the ION and E12-E14 for the LRN, the postmitotic cells take either the intraparenchymal (smms, for ION neurons) or the subpial migratory streams (mms, for LRN neurons and other populations, as those of the external cuneate nucleus, ECN). The ION neurons settle in their ultimate domain from E16 to E18, ipsilaterally to their proliferation side. The LRN (and ECN) neurons cross the midline at the "floor plate" (FP) level, and settle contralaterally to their birthplace between E17 and E19. In both cases, the acquisition of a mature dendritic tree is a late event when compared to the precocious axonogenesis. The FP structure may play a major role in i) attracting the axons of the precerebellar neurons, and ii) instructing these neurons whether to cross the midline or not. Thus, ultimately the FP may govern the pattern (crossed or uncrossed) of the projections of the ION and LRN to their common cerebellar target.  相似文献   

4.
The rhombic lip, a dorsal stripe of the neuroepithelium lining the edge of the fourth ventricle, is the site of origin of precerebellar neurons (PCN), which migrate tangentially towards the floor plate. After reaching the floor plate, they project their axons to the cerebellum. Although previous studies have shown that the guidance molecules Netrin/DCC and Slit/Robo have critical roles in PCN migration, the molecular mechanisms underlying this process remain poorly understood. Here, we report that draxin, a repulsive axon guidance protein, is involved in PCN development. We found that draxin is expressed in the rhombic lip and migratory stream of some PCN in the developing hindbrain of mice. In addition, draxin inhibited neurite outgrowth and nuclei migration from rhombic lip explants. These results suggest that draxin functions as a repulsive guidance cue for PCN migration. However, we observed no significant differences in PCN distribution between draxin−/− and wild type embryos. Thus, draxin and other axon guidance cues may have redundant roles in PCN migration.  相似文献   

5.
Commissural axons in vertebrates and insects are initially attracted to the nervous system midline, but once they reach this intermediate target they undergo a dramatic switch, becoming responsive to repellent Slit proteins at the midline, which expel them onto the next leg of their trajectory. We have unexpectedly implicated a divergent member of the Robo family, Rig-1 (or Robo3), in preventing premature Slit sensitivity in mammals. Expression of Rig-1 protein by commissural axons is inversely correlated with Slit sensitivity. Removal of Rig-1 results in a total failure of commissural axons to cross. Genetic and in vitro analyses indicate that Rig-1 functions to repress Slit responsiveness similarly to Commissureless (Comm) in Drosophila. Unlike Comm, however, Rig-1 does not produce its effect by downregulating Robo receptors on precrossing commissural axon membranes. These results identify a mechanism for regulating Slit repulsion that helps choreograph the precise switch from attraction to repulsion at a key intermediate axonal target.  相似文献   

6.
Neuronal populations destined to form several precerebellar nuclei are generated by the rhombic lip in the caudal hindbrain. These immature neurons gather into the olivary and the superficial migratory streams and migrate tangentially around the hindbrain to reach their final position. We focus on the cells of the superficial stream that migrate ventrally, cross the midline and form the lateral reticular (LRN) and external cuneate (ECN) nuclei. The cells of the superficial steam are preceded by long leading processes; in the dorsal neural tube, they migrate in close apposition to each other and form distinct chains, whereas they disperse and follow Tuj-1 immunoreactive axons on reaching the ventral hindbrain. This suggests that, in the superficial stream, neuronal migration combines both homotypic and heterotypic mechanisms. We also show that the adhesion molecule TAG-1 is expressed by the migrating cells. Blocking TAG-1 function results in alterations in the superficial migration, indicating that TAG-1 is involved in the superficial migration. Other members of the immunoglobulin superfamily and known ligands of TAG-1 are also expressed in the region of the migration but are not involved in the migration. These findings provide evidence that the TAG-1 protein is involved as a contact-dependent signal guiding not only axonal outgrowth but also cell migration.  相似文献   

7.
Nuclei are aggregates of neurons distributed in the central nervous system and are fundamental functional units that share anatomical and physiological features. Despite their importance, the cellular basis that leads to nucleogenesis is only poorly understood. Using exo utero electroporation with an enhanced yellow fluorescent protein (EYFP) gene, we show that the precerebellar neurons derived from the lower rhombic lip (lRL) undergo multiple migration steps to form nuclei. After the unilateral transfer of EYFP to the lRL of embryonic day 12.5 mice, EYFP-labelled neurons migrate tangentially from the lRL in two distinct streams, one towards the ventral metencephalon and the other towards the ventral myelencephalon. These neurons cross the ventral midline and then become radially directed. Labelled neurons in the tangential migratory streams form contralateral clusters in the external cuneate nucleus (ECN) and lateral reticular nucleus (LRN) in the myelencephalon, and bilateral clusters in the pontine grey nucleus (PGN) and reticulotegmental nucleus (RTN) in the metencephalon. Before forming the clusters, EYFP-labelled neurons begin to migrate radially towards the ventricle in close apposition to nestin-positive radial fibres, and then they aggregate as they detach from the fibres. Inhibition of cadherin function in ECN and LRN progenitors caused ipsilateral formation of the ECN and LRN, implying that the transition of their migration from tangential to radial involves a cell-intrinsic mechanism. These observations suggest that nucleogenesis of precerebellar neurons is a result of multi-phasic migration, and that ventricle-directed radial glia-guided migration is a key step for nucleogenesis.  相似文献   

8.
The floor plate of the vertebrate nervous system has been implicated in the guidance of commissural axons at the ventral midline. Experiments in chick have also suggested that at earlier stages of development the floor plate induces the differentiation of motor neurons and other neurons of the ventral spinal cord. Here we have examined the development of the spinal cord in a mouse mutant, Danforth's short-tail, in which the floor plate is absent from caudal regions of the neuraxis. In affected regions of the spinal cord, commissural axons exhibited aberrant projection patterns as they reached and crossed the ventral midline. In addition, motor neurons were absent or markedly reduced in number in regions of the spinal cord lacking a floor plate. Our results suggest that the floor plate is indeed an intermediate target in the projection of commissural axons and support the idea that several different mechanisms operate in concert in the guidance of axons to their cellular targets in the developing nervous system. In addition, these experiments suggest that the mechanisms that govern the differentiation of the floor plate and other ventral cell types in the neural tube are common to mammals and lower vertebrates.  相似文献   

9.
Specialized cells at the midline of the central nervous system have been implicated in controlling axon projections in both invertebrates and vertebrates. To address the requirement for ventral midline cells in providing cues to commissural axons in mice, we have analyzed Gli2 mouse mutants, which lack specifically the floor plate and immediately adjacent interneurons. We show that a Dbx1 enhancer drives tau-lacZ expression in a subpopulation of commissural axons and, using a reporter line generated from this construct, as well as DiI tracing, we find that commissural axons projected to the ventral midline in Gli2(-/-) embryos. Netrin1 mRNA expression was detected in Gli2(-/-) embryos and, although much weaker than in wild-type embryos, was found in a dorsally decreasing gradient. This result demonstrates that while the floor plate can serve as a source of long-range cues for C-axons in vitro, it is not required in vivo for the guidance of commissural axons to the ventral midline in the mouse spinal cord. After reaching the ventral midline, most commissural axons remained clustered in Gli2(-/-) embryos, although some were able to extend longitudinally. Interestingly, some of the longitudinally projecting axons in Gli2(-/-) embryos extended caudally and others rostrally at the ventral midline, in contrast to normal embryos in which virtually all commissural axons turn rostrally after crossing the midline. This finding indicates a critical role for ventral midline cells in regulating the rostral polarity choice made by commissural axons after they cross the midline. In addition, we provide evidence that interactions between commissural axons and floor plate cells are required to modulate the localization of Nr-CAM and TAG-1 proteins on axons at the midline. Finally, we show that the floor plate is not required for the early trajectory of motoneurons or axons of the posterior commissure, whose projections are directed away from the ventral midline in both WT and Gli2(-/-) embryos, although they are less well organized in Gli2(-/-)mutants.  相似文献   

10.
Developing axons are guided to their targets by attractive and repulsive guidance cues. In the embryonic spinal cord, the floor plate chemoattractant Netrin-1 is required to guide commissural neuron axons to the midline. However, genetic evidence suggests that other chemoattractant(s) are also involved. We show that the morphogen Sonic hedgehog (Shh) can mimic the additional chemoattractant activity of the floor plate in vitro and can act directly as a chemoattractant on isolated axons. Cyclopamine-mediated inhibition of the Shh signaling mediator Smoothened (Smo) or conditional inactivation of Smo in commissural neurons indicate that Smo activity is important for the additional chemoattractant activity of the floor plate in vitro and for the normal projection of commissural axons to the floor plate in vivo. These results provide evidence that Shh, acting via Smo, is a midline-derived chemoattractant for commissural axons and show that a morphogen can also act as an axonal chemoattractant.  相似文献   

11.
VEGF mediates commissural axon chemoattraction through its receptor Flk1   总被引:3,自引:0,他引:3  
Growing axons are guided to their targets by attractive and repulsive cues. In the developing spinal cord, Netrin-1 and Shh guide commissural axons toward the midline. However, the combined inhibition of their activity in commissural axon turning assays does not completely abrogate turning toward floor plate tissue, suggesting that additional guidance cues are present. Here we show that the prototypic angiogenic factor VEGF is secreted by the floor plate and is a chemoattractant for commissural axons in vitro and in vivo. Inactivation of Vegf in the floor plate or of its receptor Flk1 in commissural neurons causes axon guidance defects, whereas Flk1 blockade inhibits turning of axons to VEGF in vitro. Similar to Shh and Netrin-1, VEGF-mediated commissural axon guidance requires the activity of Src family kinases. Our results identify VEGF and Flk1 as a novel ligand/receptor pair controlling commissural axon guidance.  相似文献   

12.
13.
Netrin 1 is a long-range diffusible factor that exerts chemoattractive or chemorepulsive effects on developing axons growing to or away from the neural midline. Here we used tissue explants to study the action of netrin 1 in the migration of several cerebellar and precerebellar cell progenitors. We show that netrin 1 exerts a strong chemoattractive effect on migrating neurons from the embryonic lower rhombic lip at E12-E14, which give rise to precerebellar nuclei. Netrin 1 promotes the exit of postmitotic migrating neurons from the embryonic lower rhombic lip and upregulates the expression of TAG-1 in these neurons. In addition, in the presence of netrin 1, the migrating neurons are not isolated but are associated with thick fascicles of neurites, typical of the neurophilic way of migration. In contrast, the embryonic upper rhombic lip, which contains tangentially migrating granule cell progenitors, did not respond to netrin 1. Finally, in the postnatal cerebellum, netrin 1 repels both the parallel fibres and migrating granule cells growing out from explants taken from the external germinal layer. The developmental patterns of expression in vivo of netrin 1 and its receptors are consistent with the notion that netrin 1 secreted in the midline acts as chemoattractive cue for precerebellar neurons migrating circumferentially along the extramural stream. Similarly, the pattern of expression in the postnatal cerebellum suggests that netrin 1 could regulate the tangential migration of postmitotic premigratory granule cells. Thus, molecular mechanisms considered as primarily involved in axonal guidance appear also to steer neuronal cell migration.  相似文献   

14.
BMPs as mediators of roof plate repulsion of commissural neurons   总被引:1,自引:0,他引:1  
During spinal cord development, commissural (C) neurons, located near the dorsal midline, send axons ventrally and across the floor plate (FP). The trajectory of these axons toward the FP is guided in part by netrins. The mechanisms that guide the early phase of C axon extension, however, have not been resolved. We show that the roof plate (RP) expresses a diffusible activity that repels C axons and orients their growth within the dorsal spinal cord. Bone morphogenetic proteins (BMPs) appear to act as RP-derived chemorepellents that guide the early trajectory of the axons of C neurons in the developing spinal cord: BMP7 mimics the RP repellent activity for C axons in vitro, can act directly to collapse C growth cones, and appears to serve an essential function in RP repulsion of C axons.  相似文献   

15.
16.
The spinal cord of early zebrafish embryos contains a small number of neuronal classes whose growth cones all follow stereotyped, cell-specific pathways to their targets. Two classes of spinal neurons make cell-specific turns at or near the ventral midline of the spinal cord, which is occupied by a single row of midline floor plate cells. We tested whether these cells guide the growth cones by examining embryos missing the midline floor plate cells due either to laser ablation of the cells or to a mutation (cyc-1). In these embryos the growth cones followed both normal and aberrant pathways once near the ventral midline. This suggests that normally the midline floor plate cells do provide guidance cues, but that these cues are not obligatory.  相似文献   

17.
During development of the central nervous system (CNS), commissural axons grow toward the ventral midline. After crossing the floor plate, they abruptly change their trajectory from the circumferential to the longitudinal axis. The contacts between the commissural axons and the floor plate cells are involved in this axonal guidance, but their mechanisms or structures have not fully been understood. In this study, we found that nectin-1 and -3, immunoglobulin-like cell-cell adhesion molecules, asymmetrically localized at the contact sites between the commissural axons and the floor plate cells, respectively. In vitro perturbation of the endogenous trans-interaction between nectin-1 and -3 caused abnormal fasciculation of the commissural axons and impairment of the contacts, and resulted in failure in longitudinal turns of the commissural axons at the contralateral sites of the rat hindbrain. These results indicate that the contacts between the commissural axons and the floor plate cells are mediated by the hetero-trans-interaction between nectin-1 and -3 and involved in regulation of the trajectory of the commissural axons.  相似文献   

18.
In the chick dorsal mesencephalon, the optic tectum, the developing axons must choose between remaining on the same side of the midline or growing across it. The ipsilaterally projecting axons, forming the tectobulbar tract, course circumferentially toward the ventrally situated floor plate but before reaching the basal mesencephalon, the tegmentum, gradually turn caudally. Here, they follow the course of the medial longitudinal fasciculus (MLF), located parallel to the floor plate. By in vivo labeling of tectal axons, we could demonstrate that these axons arise primarily in the dorsal tectum. To test the idea that chemorepellent molecules are involved in guidance of the nondecussating axons, we performed coculture experiments employing tectal explants from various positions along the dorso-ventral axis. Axons emanating from dorsal tectal explants were strongly repelled by diencephalic tissue containing the neurons that give rise to the MLF whereas ventral tectal axons showed only a moderate response. This inhibitory effect was substantially neutralized by the addition of anti-neuropilin-1 antibodies. A similar differential response of axons was observed when tectal explants were cocultured with cell aggregates secreting the chemorepellent Semaphorin 3A (Sema3A). Sema3B and Sema3C, respectively, did not inhibit growth of tectal axons. In addition, neither the floor plate nor Slit2-secreting cell aggregates influenced outgrowth of dorsal fibers. In Sema3A-deficient mice, DiI-labeling revealed that dorsal mesencephalic axons cross the MLF instead of turning posteriorly upon reaching the fiber tract, thus behaving like the ventrally originating contralaterally projecting axons. A differential responsiveness of tectal axons to Sema3A most likely released by the MLF thus contributes to pathfinding in the ventral mesencephalon.  相似文献   

19.
Gore BB  Wong KG  Tessier-Lavigne M 《Neuron》2008,57(4):501-510
Commissural axons are attracted to the midline intermediate target by chemoattractants, but upon crossing the midline they switch off responsiveness to attractants and switch on responsiveness to midline repellents, which expel the axons from the midline and enable them to move on. Here we show that midline exit also requires the stimulation of axon outgrowth by Stem Cell Factor (SCF, also known as Steel Factor). SCF is expressed by midline floor plate cells, and its receptor Kit, a receptor tyrosine kinase, is expressed by commissural axons. In Steel and Kit mutant mice, the majority of commissural axons line up transiently at the contralateral edge of the floor plate, showing a delay in midline exit. In vitro, SCF selectively promotes outgrowth of postcrossing, but not precrossing, commissural axons. Our findings identify SCF as a guidance cue in the CNS, and provide evidence that exiting intermediate targets requires activation of outgrowth-promoting mechanisms.  相似文献   

20.
During development of the vertebrate CNS, commissural axons initially grow circumferentially toward the ventral midline floor plate. After crossing the floor plate, they abruptly change their trajectory from the circumferential to the longitudinal axis. Although recent studies have unraveled the mechanisms that control navigation of these axons along the circumferential axis, those that result in the transition from circumferential to longitudinal trajectory remain unknown. Here, we examined whether an interaction with the floor plate is a prerequisite for the initiation of trajectory transition of commissural axons, using in vitro preparations of the rat metencephalon. We found that commissural axons in the metencephalon, once having crossed the floor plate, turned sharply to grow longitudinally. In contrast, axons extending in floor plate-deleted preparations, continued to grow circumferentially, ignoring the hypothetical turning point. These results suggest that a prior interaction of commissural axons with floor plate cells is a key step for these axons to activate a navigation program required for their change in axonal trajectory from the circumferential to the longitudinal axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号