首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
N. Takasaki  T. Yamaki  M. Hamada  L. Park    N. Okada 《Genetics》1997,146(1):369-380
The genomes of chum salmon and pink salmon contain a family of short interspersed repetitive elements (SINEs), designated the salmon SmaI family. It is restricted to these two species, a distribution that suggests that this SINE family might have been generated in their common ancestor. When insertions of the SmaI SINEs at 10 orthologous loci of these species were analyzed, however, it was found that there were no shared insertion sites between chum and pink salmon. Furthermore, at six loci where SmaI SINEs have been species-specifically inserted in chum salmon, insertions of SINEs were polymorphic among populations of chum salmon. By contrast, at four loci where SmaI SINEs had been species-specifically inserted in pink salmon, the SINEs were fixed among all populations of pink salmon. The interspecific and intraspecific variation of the SmaI SINEs cannot be explained by the assumption that the SmaI family was amplified in a common ancestor of these two species. To interpret these observations, we propose several possible models, including introgression and the horizontal transfer of SINEs from pink salmon to chum salmon during evolution.  相似文献   

2.
3.
Armadillos, anteaters, and sloths (Order Xenarthra) comprise 1 of the 4 major clades of placental mammals. Isolated in South America from the other continental landmasses, xenarthrans diverged over a period of about 65 Myr, leaving more than 200 extinct genera and only 31 living species. The presence of both ancestral and highly derived anatomical features has made morphoanatomical analyses of the xenarthran evolutionary history difficult, and previous molecular analyses failed to resolve the relationships within armadillo subfamilies. We investigated the presence/absence patterns of retroposons from approximately 7,400 genomic loci, identifying 35 phylogenetically informative elements and an additional 39 informative rare genomic changes (RGCs). DAS-short interspersed elements (SINEs), previously described only in the Dasypus novemcinctus genome, were found in all living armadillo genera, including the previously unsampled Chlamyphorus, but were noticeably absent in sloths. The presence/absence patterns of the phylogenetically informative retroposed elements and other RGCs were then compared with data from the DNA sequences of the more than 12-kb flanking regions of these retroposons. Together, these data provide the first fully resolved genus tree of xenarthrans. Interestingly, multiple evidence supports the grouping of Chaetophractus and Zaedyus as a sister group to Euphractus within Euphractinae, an association that was not previously demonstrated. Also, flanking sequence analyses favor a close phylogenetic relationship between Cabassous and Tolypeutes within Tolypeutinae. Finally, the phylogenetic position of the subfamily Chlamyphorinae is resolved by the noncoding sequence data set as the sister group of Tolypeutinae. The data provide a stable phylogenetic framework for further evolutionary investigations of xenarthrans and important information for defining conservation priorities to save the diversity of one of the most curious groups of mammals.  相似文献   

4.
Much of the eukaryotic genome is composed of a variety of repetitive sequences. Amongst these, there are two kinds of retroposons (sequence elements derived from nonviral cellular RNA): SINEs (short interspersed elements) and LINEs (long interspersed elements). Amplification of SINEs occurs in a single germ cell, and the members of SINEs spread and become fixed in populations through genetic drift. SINEs can be regarded as phylogenetic landmarks: they are specific to one species, a few species, a genus or in some cases a family, indicating a specific time of amplification during evolution. Recent studies concerning the structure and origin of many SINEs revealed that retroposons are more widespread in animal genomes than was previously thought.  相似文献   

5.
The SmaI family of repeats is present only in the chum salmon and the pink salmon, and it is not present in five other species in the same genus or in other species in closely related genera. In the present study, we showed that another short interspersed repetitive elements (SINEs) family, which is almost identical to the SmaI family, is present in all fishes in the subfamily Coregoninae, being regarded as the most primitive salmonids. This new family of SINEs was designated the SmaI-cor family (SmaI family of repeats in coregonids). The consensus sequence of the SmaI-cor family was found to be 98.6% homologous to that of the SmaI family. Accordingly, it is difficult to explain the high degree of homology between these two families of SINEs by any mechanism other than the horizontal transfer of SINEs. The estimates of the rate of neutral mutation of nuclear genes, comparing chum salmon and European whitefish, confirmed this possibility. Our results strongly suggest that a member(s) of the SmaI-cor family might have been transferred horizontally from one coregonid species to a common ancestor of chum and pink salmon or to these two species independently, to allow subsequent amplification of the SmaI family in their respective genomes.  相似文献   

6.
A mobile element based phylogeny of Old World monkeys   总被引:6,自引:0,他引:6  
SINEs (Short INterspersed Elements) are a class of non-autonomous mobile elements that are <500 bp in length and have no open reading frames. Individual SINE elements are essentially homoplasy free with known ancestral states, making them useful genetic systems for phylogenetic studies. Alu elements are the most successful SINE in primate genomes and have been utilized for resolving primate phylogenetic relationships and human population genetics. However, no Alu based phylogenetic analysis has yet been performed to resolve relationships among Old World monkeys. Using both a computational approach and polymerase chain reaction display methodology, we identified 285 new Alu insertions from sixteen Old World monkey taxa that were informative at various levels of catarrhine phylogeny. We have utilized these elements along with 12 previously reported loci to construct a phylogenetic tree of the selected taxa. Relationships among all major clades are in general agreement with other molecular and morphological data sets but have stronger statistical support.  相似文献   

7.
Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map.  相似文献   

8.
Baleen whales (suborder Mysticeti) comprise 11 extant species that are classified into four families. Although several phylogenetic hypotheses about these taxa have been proposed, their phylogenetic relationships remain confused. We addressed this problem using short interspersed repetitive element (SINE) insertion data, which now are regarded as almost ideal shared, derived characters at the molecular level. We reconstructed the phylogenetic relationships of baleen whales by characterizing 36 informative SINE loci. One of the intriguing conclusions is that balaenopterids and eschrichtiids radiated very rapidly during a very short evolutionary period. During this period, speciation occurred in balaenopterids and eschrichtiids while newly inserted SINE loci remains polymorphic. Later on, these SINEs were sorted incompletely into each lineage. Thus, there are now inconsistencies among species regarding the presence or absence of a given SINE. This is in sharp contrast to the phylogeny of toothed whales, for which no SINE inconsistencies have been found. Furthermore, we found monophyletic groupings between humpback and fin whales as well as between (sei+Bryde's) whales and blue whales, both of which have not previously been recognized. The comprehensive SINE insertion data, together with the mitochondrial DNA phylogeny that was recently completed (Sasaki, T., M. Nikaido, H. Healy et al. 2005. Mitochondrial phylogenetics and evolution of mysticete whales. Syst. Biol. 56:77-90; Rychel, A. L., T. W. Reeder, and A. Berta. 2004. Phylogeny of mysticete whales based on mitochondrial and nuclear data. Mol. Phylogenet. Evol. 32:892-901), provide a nearly complete picture of the evolutionary history of baleen whales.  相似文献   

9.
LEMURS (INFRAORDER: Lemuriformes) are a radiation of strepsirrhine primates endemic to the island of Madagascar. As of 2012, 101 lemur species, divided among five families, have been described. Genetic and morphological evidence indicates all species are descended from a common ancestor that arrived in Madagascar ~55-60 million years ago (mya). Phylogenetic relationships in this species-rich infraorder have been the subject of debate. Here we use Alu elements, a family of primate-specific Short INterspersed Elements (SINEs), to construct a phylogeny of infraorder Lemuriformes. Alu elements are particularly useful SINEs for the purpose of phylogeny reconstruction because they are identical by descent and confounding events between loci are easily resolved by sequencing. The genome of the grey mouse lemur (Microcebus murinus) was computationally assayed for synapomorphic Alu elements. Those that were identified as Lemuriformes-specific were analyzed against other available primate genomes for orthologous sequence in which to design primers for PCR (polymerase chain reaction) verification. A primate phylogenetic panel of 24 species, including 22 lemur species from all five families, was examined for the presence/absence of 138 Alu elements via PCR to establish relationships among species. Of these, 111 were phylogenetically informative. A phylogenetic tree was generated based on the results of this analysis. We demonstrate strong support for the monophyly of Lemuriformes to the exclusion of other primates, with Daubentoniidae, the aye-aye, as the basal lineage within the infraorder. Our results also suggest Lepilemuridae as a sister lineage to Cheirogaleidae, and Indriidae as sister to Lemuridae. Among the Cheirogaleidae, we show strong support for Microcebus and Mirza as sister genera, with Cheirogaleus the sister lineage to both. Our results also support the monophyly of the Lemuridae. Within Lemuridae we place Lemur and Hapalemur together to the exclusion of Eulemur and Varecia, with Varecia the sister lineage to the other three genera.  相似文献   

10.
Many SINEs and LINEs have been characterized to date, and examples of the SINE and LINE pair that have the same 3' end sequence have also increased. We report the phylogenetic relationships of nearly all known LINEs from which SINEs are derived, including a new example of a SINE/LINE pair identified in the salmon genome. We also use several biological examples to discuss the impact and significance of SINEs and LINEs in the evolution of vertebrate genomes.  相似文献   

11.
The genus Lythrypnus is a group of marine gobies that exhibit extreme gender flexibility as bidirectional sex changers. The genus consists of 20 described species and several undescribed species that are distributed in the Americas. Five species have been characterized with respect to sex allocation and gonad morphology. The hormonal, morphological, and behavioral aspects of sex change have been studied extensively for one species, L. dalli. These data, however, have not been interpreted in an evolutionary context because a phylogenetic hypothesis has not previously been proposed for the genus Lythrypnus. We propose the first phylogenetic hypothesis for the genus based on molecular data from three mitochondrial genes (12s, ND2, and Cytb), one nuclear gene (Rag1) and one nuclear intron (S7). We also include three previously undescribed Lythrypnus species. Our results support the monophyly of the genus with L. heterochroma, an Atlantic species, as the basal taxon. After the divergence of L. heterochroma, there are two main clades, one comprised of species distributed in the Atlantic, the other comprised of species distributed in the Pacific. These data indicate an Atlantic origin for the genus, followed by divergence after the closure of the Isthmus of Panama. Our data also support the monophyly of three previously described species complexes, the L. rhizophora complex and L. dalli complex in the Pacific, and the L. mowbrayi complex in the Atlantic. We mapped patterns of sex allocation within this genus onto the fully resolved and supported topology, and found that sexual plasticity and gender flexibility is likely a synapomorphy for the genus. Overall our results create a well-supported framework to understand the phylogeography of the genus, and to interpret the evolution of sex allocation in Lythrypnus gobies.  相似文献   

12.
Previous studies of population genetic structure of fall‐run chinook salmon (Oncorhynchus tshawytscha) in California’s Central Valley have either not focused on or have been unable to resolve intertributary differences within the San Joaquin River basin. The authors describe the isolation, the polymerase chain reaction conditions, and characterize the cross‐species amplification of 17 microsatellite loci in six species of salmonids. Fourteen of these loci are polymorphic in fall‐run chinook from the San Joaquin River drainage. These results indicate the potential utility of microsatellite markers developed for one species, for both congenerics and species within a closely related genus.  相似文献   

13.
Short interspersed elements (SINEs) are nonautonomous non-LTR retrotransposons that populate eukaryotic genomes. Numerous SINE families have been identified in animals, whereas only a few have been described in plants. Here we describe a new family of SINEs, named BoS, that is widespread in Brassicaceae and present at ∼2000 copies in Brassica oleracea. In addition to sharing a modular structure and target site preference with previously described SINEs, BoS elements have several unusual features. First, the head regions of BoS RNAs can adopt a distinct hairpin-like secondary structure. Second, with 15 distinct subfamilies, BoS represents one of the most diverse SINE families described to date. Third, several of the subfamilies have a mosaic structure that has arisen through the exchange of sequences between existing subfamilies, possibly during retrotransposition. Analysis of BoS subfamilies indicate that they were active during various time periods through the evolution of Brassicaceae and that active elements may still reside in some Brassica species. As such, BoS elements may be a valuable tool as phylogenetic makers for resolving outstanding issues in the evolution of species in the Brassicaceae family.  相似文献   

14.
The phylogenetic relationships among the three subfamilies (Salmoninae, Coregoninae and Thymallinae) in the Salmonidae have not been addressed extensively at the molecular level. In this study, the whole mitochondrial genomes of two Thymallinae species, Thymallus arcticus and Thymallus thymallus were sequenced, and the published mitochondrial genome sequences of other salmonids were used for Bayesian and maximum‐likelihood phylogenetic analyses. These results support an ancestral Coregoninae, branching within the Salmonidae, with Thymallinae as the sister group to Salmoninae.  相似文献   

15.
Short INterspersed Elements (SINEs) make very useful phylogenetic markers because the integration of a particular element at a location in the genome is irreversible and of known polarity. These attributes make analysis of SINEs as phylogenetic characters an essentially homoplasy-free affair. Alu elements are primate-specific SINEs that make up a large portion of the human genome and are also widespread in other primates. Using a combination wet-bench and computational approach we recovered 190 Alu insertions, 183 of which are specific to the genomes of nine New World primates. We used these loci to investigate branching order and have produced a cladogram that supports a sister relationship between Atelidae (spider, woolly, and howler monkeys) and Cebidae (marmosets, tamarins, and owl monkeys) and then the joining of this two family clade to Pitheciidae (titi and saki monkeys). The data support these relationships with a homoplasy index of 0.00. In this study, we report one of the largest applications of SINE elements to phylogenetic analysis to date, and the results provide a robust molecular phylogeny for platyrrhine primates.  相似文献   

16.
Reticulate, or non-bifurcating, evolution is now recognized as an important phenomenon shaping the histories of many organisms. It appears to be particularly common in plants, especially in ferns, which have relatively few barriers to intra- and interspecific hybridization. Reticulate evolutionary patterns have been recognized in many fern groups, though very few have been studied rigorously using modern molecular phylogenetic techniques in order to determine the causes of the reticulate patterns. In the current study, we examine patterns of branching and reticulate evolution in the genus Dryopteris, the woodferns. The North American members of this group have long been recognized as a classic example of reticulate evolution in plants, and we extend analysis of the genus to all 30 species in the New World, as well as numerous taxa from other regions. We employ sequence data from the plastid and nuclear genomes and use maximum parsimony (MP), maximum likelihood (ML), Bayesian inference (BI), and divergence time analyses to explore the relationships of New World Dryopteris to other regions and to reconstruct the timing and events which may have led to taxa displaying reticulate rather than strictly branching histories. We find evidence for reticulation among both the North and Central/South American groups of species, and our data support a classic hypothesis for reticulate evolution via allopolyploid speciation in the North America taxa, including an extinct diploid progenitor in this group. In the Central and South American species, we find evidence of extensive reticulation involving unknown ancestors from Asia, and we reject deep coalescent processes such as incomplete lineage sorting in favor of more recent intercontinental hybridization and chloroplast capture as an explanation for the origin of the Latin American reticulate taxa.  相似文献   

17.
A lambda clone containing a rainbow trout IL-1beta1 gene was isolated by a PCR screening strategy from a genomic library cloned in lambda GEM-11, and an EcoRI fragment from this clone was fully sequenced, and contained 1680 bp 5'-flanking sequence, the whole IL-1beta1 gene open reading frame, and the 3'-flanking region with two potential poly A signals and poly A sites. This clone encoded a protein that shared 99.8% identity to the previously published trout IL-1beta1 cDNA sequence, with only three base substitutions. The main difference was that this clone had an additional complete HpaI SINE insertion in the 3rd intron making intron III 211 bp larger (834 bp via 623 bp). Thus this sequence was designated as allele B (Big intron III) of IL-1beta1 and the previously reported sequence as allele S (Short intron III). Three lines of evidence (allele specific PCR, cloning and sequencing, and direct sequencing of PCR products) revealed that allele B was constitutively expressed and could respond to stimulation with lipopolysaccharide or trout recombinant IL-1beta. Searching of the GenBank database with the HpaI SINE sequence resulted in three additional HpaI loci being identified in rainbow trout. Another SINE retroposition was also identified in the same intron of both alleles of IL-1beta1 by comparison with the trout IL-1beta2 gene. This novel SINE sequence, sharing high homology with the HpaI SINE at the 3'-end region, is present in EST databases of several species including human, mouse and fish. The consensus of this novel SINE shares 57 to 61% identities to tRNA-Leu from different species. Another older retroposition event in the same intron of IL-1beta1 has also been hypothesised, recognised as six adenines, that may function as a RNA polIII terminator. A model for the IL-1beta1 allele formation is proposed. Following the earliest retroposition into one of the two IL-1beta genes that resulted from a genome duplication in salmonids, the proper environment for successive PV SINE retroposition was created. A recent retroposition of the HpaI SINE in IL-1beta1 resulted in the formation of the two alleles of IL-1beta1. Examination of the SINEs insertion and their host gene microenvironments revealed that the SINE retroposition does not appear random, both in the site selection and the direction of insertion. The mechanism governing this outcome is discussed.  相似文献   

18.
We present here the sequence and characterization of various minisatellite-like tandem repeat loci isolated from the genome of Atlantic salmon (Salmo salar). Their diversity of sequence and lack of core motifs common to minisatellites of other species suggest the presence of numerous and previously unidentified simple sequence repeat families in this salmonid. Evidence for their ubiquity was provided by screening of a salmon genomic library. Southern blot analysis of the phylogenetic distribution of a subset of the minisatellites found one sequence to be pervasive among vertebrates, others present only in Salmoninae or Salmonidae species, and one amplified only in Atlantic salmon. There is evidence for the positioning of microsatellite and minisatellite arrays in close proximity at many loci. Furthermore, one tandem repeat appears to have been inserted into the transposase coding region of a copy of the Tc1 transposon-like element recently identified in salmonids. Received: 9 October 1996 / Accepted: 20 May 1997  相似文献   

19.
Evolution of the salmonid mitochondrial control region.   总被引:12,自引:0,他引:12  
To explore the evolutionary nature of the salmonid mitochondrial DNA (mtDNA) control region (D-loop) and its utility for inferring phylogenies, the entire region was sequenced from all eight species of anadromous Pacific salmon, genus Oncorhynchus; the Atlantic salmon, Salmo salar; and the Arctic grayling, Thymallus arcticus. A comparison of aligned sequences demonstrates that the generally conserved sequence elements that have been previously reported for other vertebrates are maintained in these primitive teleost fishes. Results reveal a significantly nonrandom distribution of nucleotide substitutions, insertions, and deletions that suggests that portions of the salmonid D-loop may be under differential selective constraints and that most of the control region of these fishes may evolve at a rate similar to that of the remainder of their mtDNA genomes. Maximum likelihood and Fitch parsimony analyses of 9 kb of aligned salmonid sequence data give evolutionary trees of identical topology. These results are consistent with previous molecular studies of a limited number of salmonid taxa and with more comprehensive, classical analyses of salmonid evolution. Predictions from these data, based on a molecular clock assumption for the mtDNA control region, are also consistent with fossil evidence that suggests that species of Oncorhynchus could be as old as the Middle Pliocene and would have thus given rise to the extant Pacific salmon prior to about 5 or 6 million years ago.  相似文献   

20.
Previous molecular phylogenetic studies have failed to resolve the branching order among the major cotton (Gossypium) lineages, and it has been unclear whether this reflects actual history (rapid radiation) or sampling properties of the genes evaluated. In this paper, we reconsider the phylogenetic relationships of diploid cotton genome groups using DNA sequences from 11 single-copy nuclear loci (10?293 base pairs [bp]), nuclear ribosomal DNA (695 bp), and four chloroplast loci (7370 bp). Results from individual loci and combined nuclear and chloroplast DNA partitions reveal that the cotton genome groups radiated in rapid succession following the formation of the genus. Maximum likelihood analysis of nuclear synonymous sites shows that this radiation occurred within a time span equivalent to 17% of the time since the separation of Gossypium from its nearest extant relatives in the genera Kokia and Gossypioides. Chloroplast and nuclear phylogenies differ significantly with respect to resolution of the basal divergence in the genus and to interrelationships among African cottons. This incongruence is due to limited character evolution in cpDNA and either previously unsuspected hybridization or unreliable phylogenetic performance of the cpDNA characters. This study highlights the necessity of using multiple, independent data sets for resolving phylogenetic relationships of rapidly diverged lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号