首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
2.
Attenuated total reflectance (ATR) spectra of plant leaves display complex absorption features related to organic constituents of leaf surfaces. The spectra can be recorded rapidly, both in the field and in the laboratory, without special sample preparation. This paper explores sources of ATR spectral variation in leaves, including compositional, positional and temporal variations. Interspecific variations are also examined, including the use of ATR spectra as a tool for species identification. Positional spectral variations generally reflected the abundance of cutin and the epicuticular wax thickness and composition. For example, leaves exposed to full sunlight commonly showed more prominent cutin- and wax-related absorption features compared with shaded leaves. Adaxial vs. abaxial leaf surfaces displayed spectral variations reflecting differences in trichome abundance and wax composition. Mature vs. young leaves showed changes in absorption band position and intensity related to cutin, polysaccharide, and possibly amorphous silica development on and near the leaf surfaces. Provided that similar samples are compared (e.g. adaxial surfaces of mature, sun-exposed leaves) same-species individuals display practically identical ATR spectra. Using spectral matching procedures to analyze an ATR database containing 117 individuals, including 32 different tree species, 83% of the individuals were correctly identified.  相似文献   

3.
The effect of leaf temperature on stomatal conductance and net CO2 uptake was studied on French bean (Phaseolus vulgaris L.) using either dehydrated attached leaves (25–40% water deficit) or cut leaves supplied with 10–4 M abscisic acid (ABA) solution to the transpiration stream. Decreasing leaf temperature caused stomatal opening and increased net CO2 uptake (which was close to zero at around 25° C) to a level identical to that of control leaves (without water deficit) at around 15° C. (i) The ABA effect on stomatal closure was modulated by temperature and, presumably, ABA is at least partly responsible for stomatal closure of french bean submitted to a drought stress. (ii) For leaf temperatures lower than 15° C, net CO2 uptake was no longer limited by water deficit even on very dehydrated leaves. This shows that dehydrated leaves retain a substantial part of their photosynthetic capacity which can be revealed at normal CO2 concentrations when stomata open at low temperature. In contrast to leaves fed with ABA, decreasing the O2 concentration from 21% to 1% O2 did not increase either the rate of net CO2 uptake or the thermal optimum for photosynthesis of dehydrated leaves. The quantum yield of PSII electron flow (measured by F/Fm) was lower in 1% O2 than in 21% O2 for each leaf pretreatment given (non-dehydrated leaves, dehydrated leaves, and leaves fed with ABA) even within a temperature range in which leaf photosynthesis at normal CO2 concentration was the same in these two O2 concentrations. It is concluded that this probably indicates an heterogeneity of photosynthesis, since this difference in quantum yield disappears when using high CO2 concentrations during measurements.Abbreviations and Symbols ABA abscisic acid - Fm maximum chlorophyll fluorescence - F difference between steady-state chlorophyll fluorescence and Fm - PPFD photosynthetic photon flux density We would like to thank Dr. J.-M. Briantais (Laboratoire d'écologie végétale, Orsay, France) for help during fluorescence measurements and Ms. J. Liebert for technical assistance.  相似文献   

4.
Annett Hertel  Ernst Steudle 《Planta》1997,202(3):324-335
Using the cell pressure probe, the effects of temperature on hydraulic conductivity (Lp; osmotic water permeability), solute permeability (permeability coefficient, Ps), and reflection coefficients (σs) were measured on internodes of Chara corallina, Klein ex Willd., em R.D.W.. For the first time, complete sets of transport coefficients were obtained in the range between 10 and 35 °C which provided evidence about pathways of water and solutes as they move across the plasma membrane (water channel and bilayer arrays). Test solutes used to check for the selectivity of water channels were monohydric alcohols of different molecular size and shape (ethanol, n-propanol, iso-propanol, and tert-butanol) and heavy water (HDO). Within the limits of accuracy, Q10 values for Lp and for the diffusive water permeability (Pd) were identical (Q10 for Lp = 1.29 ± 0.17 (± SD; n = 15 cells) and Q10 for Pd = 1.25 ± 0.16 (n = 5 cells)). The Q10 values were equivalent to activation energies of Ea = 16.8 ± 6.4 and 16.6 ± 10.0 kJ · mol−1, respectively, which is similar to that of self-diffusion or of viscous flow of water. The Q10 values and activation energies for Ps of the alcohols were significantly larger (ethanol: Q10 = 1.68 ± 0.16, Ea = 37.1 ± 5.9 kJ · mol−1; n-propanol: Q10 =  1.75 ± 0.40, Ea = 43.1 ± 15.3 kJ · mol−1; iso-propanol: Q10 = 2.12 ± 0.42, Ea =  52.2 ± 14.6 kJ · mol−1; tert-butanol: Q10 = 2.13 ± 0.56, Ea = 51.6 ± 17.1 kJ · mol−1; ±SD; n = 5 to 6 cells). Effects of temperature on reflection coefficients were most pronounced. With increasing temperature, σs values of the alcohols decreased and those of HDO increased. The data indicate that water and solutes use different pathways when crossing the membrane. Ordinary and isotopic water use water channels and the other test solutes use the bilayer array (composite transport model of membrane). Changes in σs values with temperature were found to be a sensitive measure for the open/closed state of water channels. The decrease of σs with temperature was theoretically predicted from the temperature dependence of Ps and Lp. Differences between predicted and measured values of σs allowed estimation of the bypass flow (slippage) of solutes through water channels which did not completely exclude test solutes. The permeability of channels depended on the structure and size of test solutes. It is concluded that water channels are much less selective than is usually thought. Since water channels represent single-file or no-pass pores, solutes drag along considerable amounts of water as they diffuse across channels. This results in low overall values of σs. The σs of HDO was extremely low. Its response to temperature was opposite to that for the σs of the alcohols. This suggested a stronger effect of temperature on the hydraulic (osmotic) than on the diffusive water flow across individual water channels, i.e. a differential sensitivity of different mechanisms to temperature. Received: 10 October 1996 / Accepted: 2 December 1996  相似文献   

5.
An experimental study is described of the formation of extracellular deposits on the surfaces of cells in freeze-fractured, frozen-hydrated primary leaves of Phaseolus vulgaris examined by low-temperature scanning electron microscopy. The deposits, observed under a range of experimental conditions, consisted of (a) droplets with diameters of 1.5 to 3.0 m, (b) droplets with diameters of 10 to 30 m, (c) crystals with diameters of 1.0 to 6.0 m, and (d) granules with diameters up to 0.15 m. The types of deposit were influenced by specimen cooling rate, and their distribution was influenced by the direction of the thermal gradient during cooling. All deposits were predominantly water ice. The quantities of deposited water (up to 4.0% of the leaf water content) increased as the cooling rate was reduced. It is concluded that the ice deposits were primarily artefacts of cryofixation and do not represent the location of water in vivo, as recently suggested. We propose that the deposits arose in four main ways: (1) displacement of water from underlying cells by a pressure wave resulting from the volume increase of intracellular water as it freezes, (2) evaporation of water from warmer cells and its condensation onto colder cells, (3) withdrawal of water from underlying cells by extracellular ice crystallization, (4) condensation of pre-existing water vapour in the intercellular spaces onto cells. The significance of the findings is discussed in relation to the use of lowtemperature scanning electron microscopy in studies of plant morphology and for localizing water and soluble ions within plant cells and tissues.Abbreviation LTSEM low-temperature scanning electron microscopy  相似文献   

6.
开花期低温胁迫对水稻花粉性状及剑叶理化特性的影响   总被引:5,自引:0,他引:5  
以耐冷水稻品种996和冷敏感品种4628为材料,开花期在人工气候室进行7 d低温(06:00-8:00和19:00-23:00,19 ℃;08:00-10:00和16:00-19:00,21 ℃;10:00-16:00,23 ℃;23:00-06:00,17 ℃)和适温(06:00-8:00和19:00-23:00,24 ℃;08:00-10:00和16:00-19:00,26 ℃;10:00-16:00,30 ℃;23:00-06:00,22 ℃)处理,研究了低温胁迫对水稻花药开裂、花粉性状及剑叶叶绿素、可溶性糖和可溶性蛋白质含量、膜透性等理化特性的影响.结果表明:开花期低温胁迫导致水稻花药开裂系数、花粉萌发率显著下降,中部和下部颖花的不育花粉率增加.996的花药开裂系数和花粉萌发率显著高于4628,表明耐冷品种996在开花期低温胁迫下能保持较好的花粉散落特性和花粉萌发特性.低温胁迫下,996的剑叶可溶性蛋白质和游离脯氨酸含量及其增幅显著高于4628,而丙二醛含量和相对电导率及其增幅却显著低于4628,说明耐冷品种在低温胁迫下的保护性反应更迅速和强烈,其膜结构及功能更稳定.  相似文献   

7.
在15~35℃、RH80%~85%条件下,研究了加州新小绥螨Neoseiulus (Amblyseius) californicus (Mcgregor)以截形叶螨Tetranychus truncatus Ehara为猎物时,不同螨态的发育和实验种群生命表。结果表明,加州新小绥螨在此温度范围内能完成世代发育,世代发育历期随着温度升高而逐渐缩短。该螨能适应35℃的高温条件,雌性的发育历期最短仅为6.14d。平均产卵期和平均寿命均随着温度的上升逐渐缩短。20℃~25℃时,该螨的平均产卵量最大,达53.73粒/雌。净增殖率在20℃时最高(48.2525),且雌雄性比最大。15℃时内禀增长率和周限增长率均最低,分别为0.0638和1.0659,种群倍增时间最长(10.8669d),35℃时内禀增长率和周限增长率均最高,分别为0.1954和1.2158,种群倍增时间最短(3.5477d)。  相似文献   

8.
K. Raschke  A. Resemann 《Planta》1986,168(4):546-558
Parts of attached leaves of the sclerophyllous shrub Arbutus unedo were subjected to simulated mediterranean days. Gas exchange was recorded in order to recognize the causes of the midday depression in CO2 assimilation. Depressions could be induced in part of a leaf: they were local responses. The CO2-saturation curves of photosynthesis, determined during the morning and afternoon maxima of CO2 assimilation and during the minimum at midday, established that depressions in CO2 assimilation were in one-half of the investigated cases totally caused by reversible reductions in the photosynthetic capacity of the leaves, and in the other half almost totally caused by such reductions. An analysis of 37 daily courses showed that morning reductions and afternoon recoveries of stomatal conductance and rate of photosynthesis occurred simultaneously and in proportion to each other, with the result that the partial pressure of CO2 in the intercellular spaces remained more or less constant. Midday depressions occurred also in detached leaves standing in water. The initiation of a midday depression was not caused by a circadian rhythm, nor was high quantum flux or high temperature a requirement. There was no correlation between the rate of water loss from the leaves, or the amount of water lost, with the degree of reduction of the photosynthetic capacity. However, depressions occurred if an apparent threshold in the water-vapor pressure difference between leaf and air was exceeded. This critical value varied between about 20 and 30 mbar, depending on the leaf investigated. The dominating role of humidity in the induction of the midday depression was further demonstrated when leaf temperature was held constant and the vapor-pressure difference was made to follow the pattern of the mediterranean day: depressions occurred. Depressions however were hardly noticeable when the water-vapor pressure difference was held constant and leaf temperature was allowed to vary. In another set of experiments, leaves were subjected to variations in temperature and humidity independent of the time of the day, under otherwise constant conditions. Photosynthetic capacity and stomatal conductance proved to be almost insensitive to changes in temperature (in a range extending from 20 to 37° C) as long as the water vapor-pressure difference was held constant. If it was not, the rate of photosynthesis began to decline with increasing temperature after a threshold water-vapor pressure difference was exceeded. The position of the resulting apparent temperature optimum of photosynthesis depended on the humidity of the air. We suggest that the ability of A. unedo to respond to a dry atmosphere with a reversible reduction of its photosynthetic capacity (by a still unknown mechanism) is the result of a co-evolution with the development of a strong stomatal sensitivity to changes in humidity.  相似文献   

9.
10.
11.
A monoclonal antibody produced to abscisic acid (ABA) has been characterised and the development of a radioimmunoassay (RIA) for ABA using the antibody is described. The antibody had a high selectivity for the free acid of (S)-cis, trans-ABA. Using the antibody, ABA could be assayed reliably in the RIA over a range from 100 to 4000 pg (0.4 to 15 pmol) ABA per assay vial. As methanol and acetone affected ABA-antibody binding, water was used to extract ABA from leaves. Water was as effective as aqueous methanol and acetone in extracting the ABA present. Crude aqueous extracts of wheat, maize and lupin leaves could be analysed without serious interference from other immunoreactive material. This was shown by measuring the distribution of immunoreactivity in crude extracts separated by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC), or by comparing the assay with physicochemical methods of analysis. Analysis of crude extracts by RIA and either, after TLC purification, by gas chromatography using an electron-capture detector or, after HPLC purification, by combined gas chromatography-mass spectrometry (GC-MS) gave very similar ABA concentrations in the initial leaf samples. However, RIA analysis of crude aqueous extracts of pea seeds resulted in considerable overestimation of the amount of ABA present. Determinations of ABA content by GC-MS and RIA were similar after pea seed extracts had been purified by HPLC. Although the RIA could not be used to analyse ABA in crude extracts of pea seeds, it is likely that crude extracts of leaves of several other species may be assayed successfully.Abbreviations ABA abscisic acid - DW dry weight - FW fresh weight - GC-ECD gas chromatography using an electron capture detector - GC-MS combined gas chromatographymass spectrometry - HPLC high-performance liquid chromatography - McAb monoclonal antibody - PVP soluble polyvinylpyrrolidone - RIA radioimmunoassay - TLC thin-layer chromatography  相似文献   

12.
To investigate the properties of a pure liquid ordered (Lo) phase in a model membrane system, a series of saturated phosphatidylcholines combined with cholesterol were examined by variable temperature multinuclear (1H, 2H, 13C, 31P) solid-state NMR spectroscopy and x-ray scattering. Compositions with cholesterol concentrations>or=40 mol %, well within the Lo phase region, are shown to exhibit changes in properties as a function of temperature and cholesterol content. The 2H-NMR data of both cholesterol and phospholipids were used to more accurately map the Lo phase boundary. It has been established that the gel-Lo phase coexistence extends to 60 mol % cholesterol and a modified phase diagram is presented. Combined 1H-, 2H-, 13C-NMR, and x-ray scattering data indicate that there are large changes within the Lo phase region, in particular, 1H-magic angle spinning NMR and wide-angle x-ray scattering were used to examine the in-plane intermolecular spacing, which approaches that of a fluid Lalpha phase at high temperature and high cholesterol concentrations. Although it is well known for cholesterol to broaden the gel-to-fluid transition temperature, we have observed, from the 13C magic angle spinning NMR data, that the glycerol region can still undergo a "melting", though this is broadened with increasing cholesterol content and changes with phospholipid chain length. Also from 2H-NMR order parameter data it was observed that the effect of temperature on chain length became smaller with increasing cholesterol content. Finally, from the cholesterol order parameter, it has been previously suggested that it is possible to determine the degree to which cholesterol associates with different phospholipids. However, we have found that by taking into account the relative temperature above the phase boundary this relationship may not be correct.  相似文献   

13.
14.
We present a comparative differential scanning calorimetric study of the effects of the animal sterol cholesterol (Chol) and the plant sterols campesterol (Camp) and brassicasterol (Bras) on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. Camp and Bras differ from Chol in having a C24 methyl group and, additionally for Bras, a C22 trans-double bond. Camp and especially Bras decrease the temperature, cooperativity and enthalpy of the DPPC pretransition more than Chol, although these effects are attenuated at higher sterol levels. This indicates that they destabilize gel-state DPPC bilayers to a greater extent, but are less soluble, than Chol. Not surprisingly, all three sterols have similar effects on the sterol-poor sharp component of the DPPC main phase transition. However, Camp and especially Bras less effectively increase the temperature and decrease the cooperativity and enthalpy of the broad component of the main transition than Chol. This indicates that at higher sterol concentrations, Camp and Bras are less miscible and less effective than Chol at ordering the hydrocarbon chains of the sterol-enriched fluid DPPC bilayers. Overall, these alkyl side chain modifications generally reduce the ability of Chol to produce its characteristic effects on DPPC bilayer physical properties. These differences are likely due to the less extended and more bent conformations of the alkyl side chains of Camp and Bras, producing sterols with a greater effective cross-sectional area and reduced length than Chol. Hence, the structure of Chol is likely optimized for maximum solubility in, as opposed to maximum ordering of, phospholipid bilayers.  相似文献   

15.
SP-A, the major protein component of pulmonary surfactant, is absent in exogenous surfactants currently used in clinical practice. However, it is thought that therapeutic properties of natural surfactants improve after enrichment with SP-A. The objective of this study was to determine SP-A effects on physical properties and surface activity of a new synthetic lung surfactant based on a cationic and hydrophobic 21-residue peptide KLLLLKLLLLKLLLLKLLLLK, KL(4). We have analyzed the interaction of SP-A with liposomes consisting of DPPC/POPG/PA (28:9:5.6, w/w/w) with and without 0.57 mol % KL(4) peptide. We found that SP-A had a concentration-dependent effect on the surface activity of KL(4)-DPPC/POPG/PA membranes but not on that of an animal-derived LES. The surface activity of KL(4)-surfactant significantly improved after enrichment with 2.5-5 wt % SP-A. However, it worsened at SP-A concentrations > or =10 wt %. This was due to the fluidizing effect of supraphysiological SP-A concentrations on KL(4)-DPPC/POPG/PA membranes as determined by fluorescence anisotropy measurements, calorimetric studies, and confocal fluorescence microscopy of GUVs. High SP-A concentrations caused disappearance of the solid/fluid phase coexistence of KL(4)-surfactant, suggesting that phase coexistence might be important for the surface adsorption process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号