首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The trypanosomatid protist Leishmania tarentolae is a saurian-associated parasite vectored by the Sergentomyia minuta sand fly. This study aimed to confirm the circulation of L. infantum and L. tarentolae in sand flies, reptiles and dogs and to isolate new strains of these protists. Reptilian and sheltered dog blood samples were collected, and sand flies were captured. Samples were tested for Leishmania spp. using duplex real-time PCR (dqPCR) and real-time PCR (qPCR); the origin of blood meal was identified in engorged sand flies by conventional PCR. The reptilian blood and intestinal content of sand fly females were cultured. Dog sera were tested by IFAT using both Leishmania species. Four Tarentola mauritanica geckoes were molecularly positive for L. infantum or L. tarentolae, with no co-infections; moreover, amastigote-like forms of L. infantum were observed in the bone marrow. 24/294 sand flies scored positive for Leishmania spp. by dqPCR, 21 S. minuta and two Phlebotomus perniciosus were positive for L. tarentolae, while only a single Ph. perniciosus was positive for L. infantum. Blood meal analysis confirmed reptile and dog in S. minuta, dog and human in Ph. perniciosus and dog in Phlebotomus neglectus. Two axenic strains of L. tarentolae were obtained. Twelve of 19 dogs scored positive for L. infantum and L. tarentolae by IFAT and three of them also for L. infantum by dqPCR, and six by qPCR. These data confirm the sympatric circulation of L. infantum and L. tarentolae in geckoes, sand flies, and dogs, and suggest that geckoes may be infected with L. infantum.  相似文献   

2.
The Algarve Region (AR) in southern Portugal, which is an international tourist destination, has been considered an endemic region of zoonotic leishmaniasis caused by Leishmania infantum since the 1980s. In the present study, phlebotomine and canine surveys were conducted to identify sandfly blood meal sources and to update the occurrence of Leishmania infection in vectors and dogs. Four sandfly species were captured: Phlebotomus perniciosus, Phlebotomus ariasi, Phlebotomus sergenti and Sergentomyia minuta. In one P. perniciosus female, L. infantum DNA was detected. Blood meal tests showed that this species had no host preferences and was an opportunistic feeder. An overall canine leishmaniasis (CanL) seroprevalence of 16.06% was found; the seroprevalence was 3.88% in dogs housed in kennels and 40.63% in dogs that attended veterinary clinics. The simultaneous occurrence of dogs and P. perniciosus infected with L. infantum in the AR indicates that the region continues to be an endemic area for CanL. Our results reinforce the need for the systematic spatial distribution of phlebotomine populations and their Leishmania infection rates and the need to simultaneously perform pathogen monitoring in both invertebrate and vertebrate hosts to investigate the transmission, distribution and spreading of Leishmania infection.  相似文献   

3.

Background

Phlebotomine sand flies are blood-sucking insects that can transmit Leishmania parasites. Hosts bitten by sand flies develop an immune response against sand fly salivary antigens. Specific anti-saliva IgG indicate the exposure to the vector and may also help to estimate the risk of Leishmania spp. transmission. In this study, we examined the canine antibody response against the saliva of Phlebotomus perniciosus, the main vector of Leishmania infantum in the Mediterranean Basin, and characterized salivary antigens of this sand fly species.

Methodology/Principal Findings

Sera of dogs bitten by P. perniciosus under experimental conditions and dogs naturally exposed to sand flies in a L. infantum focus were tested by ELISA for the presence of anti-P. perniciosus antibodies. Antibody levels positively correlated with the number of blood-fed P. perniciosus females. In naturally exposed dogs the increase of specific IgG, IgG1 and IgG2 was observed during sand fly season. Importantly, Leishmania-positive dogs revealed significantly lower anti-P. perniciosus IgG2 compared to Leishmania-negative ones. Major P. perniciosus antigens were identified by western blot and mass spectrometry as yellow proteins, apyrases and antigen 5-related proteins.

Conclusions

Results suggest that monitoring canine antibody response to sand fly saliva in endemic foci could estimate the risk of L. infantum transmission. It may also help to control canine leishmaniasis by evaluating the effectiveness of anti-vector campaigns. Data from the field study where dogs from the Italian focus of L. infantum were naturally exposed to P. perniciosus bites indicates that the levels of anti-P. perniciosus saliva IgG2 negatively correlate with the risk of Leishmania transmission. Thus, specific IgG2 response is suggested as a risk marker of L. infantum transmission for dogs.  相似文献   

4.
BackgroundThe sand fly Phlebotomus perniciosus is the main vector of Leishmania infantum, etiological agent of zoonotic visceral leishmaniasis in the Western Mediterranean basin. Dogs are the main reservoir host of this disease. The main objective of this study was to determine, under both laboratory and field conditions, if dogs infected with L. infantum, were more attractive to female P. perniciosus than uninfected dogs.Methodology/Principal findingsWe carried out a series of host choice experiments and found that infected dogs were significantly more attractive to P. perniciosus than uninfected dogs in the laboratory as well as in the field. Significantly more P. perniciosus fed on infected dogs than on uninfected dogs. However, the fecundity of P. perniciosus fed on infected dogs was adversely impacted compared to uninfected dogs by lowering the number of laid eggs. Phlebotomus perfiliewi, the second most abundant sand fly species in the field site and a competent vector of L. infantum had similar trends of attractivity as P. perniciosus toward infected dogs under field conditions.ConclusionsThe results strongly suggest that L. infantum causes physiological changes in the reservoir host which lead to the host becoming more attractive to both male and female P. perniciosus. These changes are likely to improve the chance of successful transmission because of increased contact with infected hosts and therefore, infected dogs should be particularly targeted in the control of zoonotic visceral leishmaniasis in North Africa.  相似文献   

5.
Visceral leishmaniasis (VL) caused by Leishmania infantum is endemic in the Mediterranean basin with most of the infected human patients remaining asymptomatic. Recently, the saurian-associated Leishmania tarentolae was detected in human blood donors and in sheltered dogs. The circulation of L. infantum and L. tarentolae was investigated in humans, dogs and cats living in the Pelagie islands (Sicily, Italy) by multiple serological and molecular testing. Human serum samples (n = 346) were tested to assess the exposure to L. infantum by immunofluorescence antibody test (IFAT), enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) and to L. tarentolae by IFAT. Meanwhile, sera from dogs (n = 149) and cats (n = 32) were tested for both Leishmania species by IFAT and all blood samples, including those of humans, by specific sets of real time-PCR for L. infantum and L. tarentolae. The agreement between serological tests performed for human samples, and between serological and molecular diagnostic techniques for both human and animal samples were also assessed.Overall, 41 human samples (11.8%, 95% CI: 8.9–15.7) were positive to L. infantum (5.2%, 95% CI: 3.3–8.1), L. tarentolae (5.2%, 95% CI: 3.3–8.1) and to both species (1.4%, 95% CI: 0.6–3.3) by serology and/or molecular tests. A good agreement among the serological tests was determined. Both Leishmania spp. were serologically and/or molecularly detected in 39.6% dogs and 43.7% cats. In addition to L. infantum, also L. tarentolae circulates in human and animal populations, raising relevant public health implications. Further studies should investigate the potential beneficial effects of L. tarentolae in the protection against L. infantum infection.  相似文献   

6.
Transmission of cutaneous leishmaniasis (CL) caused by Leishmania infantum was studied in South Anatolia, Turkey. Small, non-ulcerating lesions prevailed and patients were negative in rK39 tests for antibody detection for human visceral leishmaniasis (VL). The most abundant sand fly species, Phlebotomus tobbi, was found positive for Leishmania promastigotes with a prevalence of 1.4% (13 out of 898 dissected females). The isolated strains were identical with those obtained from patients with CL and were typed as L. infantum. Phylogenetic analysis revealed similarity to MON-188 and a clear difference from the MON-1 clade. Blood-meal identification showed that P. tobbi feeds preferentially on cattle and humans. This finding, the high number of CL patients and relative scarcity of dogs in the focus, suggests that the transmission cycle could be anthroponotic.  相似文献   

7.
Mitochondrial DNA characterization of the sandfly Phlebotomus perniciosus has not resolved the population structure of its Iberian lineage. For this purpose, four AGC‐ and seven AGG‐class microsatellite loci were characterized, after their isolation using Biotin‐Avidin enrichment and the screening of plasmid libraries by polymerase chain reaction. Of the five polymorphic loci analysed in four Spanish populations, four showed patterns of allele diversity consistent with migration from a southern Ice Age refuge. Estimates of the historical migration rates of P. perniciosus will help to predict the effects of global warming on its range and that of Leishmania infantum, the parasitic protozoan it transmits.  相似文献   

8.
The dog is the main reservoir of Leishmania infantum, the causative agent of visceral leishmaniasis (VL) in humans in Southern Europe. In order to identify the risk of dogs from a Leishmania non-endemic area traveling to a Leishmania -endemic area becoming infected and the risk of transmitting infection to humans in non-endemic areas an investigation was performed, in which the results of a questionnaire were combined with the results of a serologic survey.  相似文献   

9.
Leishmaniasis is an arthropod‐borne disease that affects approximately 2 million people worldwide annually. The aims of this study were to detect the presence of Leishmania (Kinetoplastida: Trypanosomatidae) DNA and the feeding preferences of probable vector species in an endemic focus of Leishmania infantum in Turkey. Entomological sampling was performed in August and October 2015 in Ayd?n province, where cases of human and canine leishmaniasis have been reported previously. A total of 1059 sandfly specimens comprising nine species belonging to two genera, Phlebotomus and Sergentomyia (both: Diptera: Psychodidae), and five subgenera of the Phlebotomus genus (Phlebotomus, Paraphlebotomus, Larroussius, Adlerius and Transphlebotomus) were collected in five villages. Among all Phlebotomus specimens, Phlebotomus neglectus (39%) was noted as the most abundant species, followed by Phlebotomus tobbi (18%). Leishmania DNA was detected in pools from P. neglectus, P. tobbi and Sergentomyia dentata by kDNA polymerase chain reaction (PCR). Leishmania DNA from Phlebotomus specimens was identified as L. infantum, but Leishmania DNA from Sergentomyia spp. could not be identified to species level by ITS‐1 real‐time PCR. The detection of Leishmania DNA in wild‐caught P. neglectus and the high percentage (24.2%) of human DNA in engorged specimens suggests that P. neglectus is probably an important vector species for L. infantum in Ayd?n province.  相似文献   

10.
A 2‐year longitudinal study of enzyme‐linked immunosorbent assay (ELISA) antibodies against Phlebotomus perniciosus and Phlebotomus papatasi (Diptera: Psychodidae) sandfly saliva was performed in 32 Beagle dogs treated preventively with an imidacloprid–permethrin topical insecticide in an endemic area in Spain. Dogs were grouped into three sandfly exposure groups according to the time of inclusion in the study. Assays analysed immunoglobulin G (IgG) against salivary gland homogenates (SGH) of both species and recombinant P. papatasi rSP32 and P. perniciosus rSP03B proteins in serum. The dogs were participating in a Leishmania infantum (Kinetoplastida: Trypanosomatidae) vaccine trial and were experimentally infected with the parasite in the second year. No dog acquired natural L. infantum infections during the first year, but most developed anti‐saliva antibodies, and median log‐transformed optical densities (LODs) were seasonal, mimicking those of local sandflies. This indicates that the repellent efficacy of the insecticide used is below 100%. Multi‐level modelling of LODs revealed variability among dogs, autocorrelation and differences according to the salivary antigen and the dog's age. However, dog seroprevalence, estimated using pre‐exposure LODs as cut‐offs, was relatively low. This, and the fact that dogs did not become naturally infected with L. infantum, would support the efficacy and usefulness of this imidacloprid–permethrin topical insecticide in canine leishmaniasis control.  相似文献   

11.
Reporter genes have proved to be an excellent tool for studying disease progression. Recently, the green fluorescent protein (GFP) ability to quantitatively monitor gene expression has been demonstrated in different organisms. This report describes the use of Leishmania tarentolae (L. tarentolae) expression system (LEXSY) for high and stable levels of GFP production in different Leishmania species including L. tarentolae, L. major and L. infantum. The DNA expression cassette (pLEXSY-EGFP) was integrated into the chromosomal ssu locus of Leishmania strains through homologous recombination. Fluorescent microscopic image showed that GFP transgenes can be abundantly and stably expressed in promastigote and amastigote stages of parasites. Furthermore, flow cytometry analysis indicated a clear quantitative distinction between wild type and transgenic Leishmania strains at both promastigote and amastigote forms. Our data showed that the footpad lesions with GFP-transfected L. major are progressive over time by using fluorescence small-animal imaging system. Consequently, the utilization of stable GFP-transfected Leishmania species will be appropriate for in vitro and in vivo screening of anti-leishmanial drugs and vaccine development as well as understanding the biology of the host–parasite interactions at the cellular level.  相似文献   

12.
《Journal of Asia》2023,26(4):102129
Cutaneous Leishmaniasis is endemic in tribal district Khyber for last more than one decade. The causative agent Leishmania tropica is known but sand fly species responsible for the transmission of disease still needs to be investigated. A total of 2647 Phlebotomus females belonging to 11 species were divided into 435 batches and subjected to PCR for detection of Leishmania in sand flies. A total of 50 batches belonging to three species i.e. Phlebotomus sergenti, Phlebotomus papatasi and Phlebotomus alexandri were detected positive for Leishmania tropica. Overall minimum infection rate was 1.89% (50/2647). Highest minimum infection rate of 2.11% (39/1710) was observed for Phlebotomus sergenti followed by 1.21% (8/661) for Phlebotomus paptasi and 1.82% (3/165) for Phlebotomus alexandri. Both blood fed (38%) and unfed (62%) sand flies were detected positive for the parasite DNA. Positive specimens were collected throughout the active season, from all collection sites of the study area. Detection of Leishmania parasite in multiple species of Phlebotomus indicates the possible role of these species as vector of disease in the tribal district Khyber of Pakistan. It also indicates the probable complex transmission cycle of the disease involving multiple vector species in the study area. Devising a control strategy by focusing on these vector species, may reduce the disease burden in the cutaneous leishmaniasis endemic tribal district Khyber.  相似文献   

13.
14.
BackgroundDiscovered by Nicolle and Comte in 1908 in Tunisia, Leishmania infantum is an intracellular protozoan responsible for zoonotic canine leishmaniosis (CanL) and zoonotic human visceral leishmaniasis (HVL). It is endemic in several regions of the world, including Tunisia, with dogs considered as the main domestic reservoir. The geographic expansion of canine leishmaniosis (CanL) has been linked to global environmental changes that have affected the density and the distribution of its sand fly vectors.Methodology/Principal findingsIn this study, a cross-sectional epidemiological survey on CanL was carried out in 8 localities in 8 bioclimatic areas of Tunisia. Blood samples were taken from 317 dogs after clinical examination. Collected sera were tested by indirect fluorescent antibody test (IFAT; 1:80) for the presence of anti-Leishmania infantum antibodies. The overall seroprevalence was 58.3% (185/317). Among positive dogs, only 16.7% showed clinical signs suggestive of leishmaniosis. Seroprevalence rates varied from 6.8% to 84.6% and from 28% to 66% by bioclimatic zone and age group, respectively. Serological positivity was not statistically associated with gender. The presence of Leishmania DNA in blood, using PCR, revealed 21.2% (64/302) prevalence in dogs, which varied by bioclimatic zone (7.3% to 31%) and age group (7% to 25%). The entomological survey carried out in the studied localities showed 16 species of the two genera (Phlebotomus and Sergentomyia). P. perniciosus, P. papatasi, and P. perfiliewi were the most dominant species with relative abundances of 34.7%, 25% and 20.4%, respectively.Conclusions/SignificanceThe present report suggests a significant increase of CanL in all bioclimatic areas in Tunisia and confirms the ongoing spread of the infection of dogs to the country’s arid zone. Such an expansion of infection in dog population could be attributed to ecological, agronomic, social and climatic factors that affect the presence and density of the phlebotomine vectors.  相似文献   

15.
Zoonotic visceral leishmaniasis is a common vector-borne systemic disease caused by Leishmania infantum (Kinetoplastida: Trypanosomatidae). In Morocco the situation is complex: many sandfly species have been collected in areas in which the disease is endemic, but only Phlebotomus ariasi, Phlebotomus perniciosus and Phlebotomus longicuspis (Diptera: Psychodidae) have been confirmed to have vectorial roles. The objective of the present study was to ascertain the potential distribution of L. infantum and its vectors in Morocco, using ecological niche modelling. Vector records were obtained from field collections of the Laboratory team and from previously published entomological observations. Epidemiological data for L. infantum modelling were obtained from Moroccan Ministry of Health reports. The jackknife test indicated that the bioclimatic variables with the greatest influence on model development for all species were annual precipitation and precipitation in the driest quarter of the year. MaxEnt model representations for sandfly species that act as vectors of L. infantum showed the widespread geographic distribution of these species in Morocco, specifically in northern and central Morocco, where foci of visceral leishmaniasis are found. The ecological niche modelling points out areas in which the probability of occurrence of these species is higher. This information should be considered as a starting point for further research to fully elucidate the ecology and epidemiology of these species, as well as of the pathogens they transmit.  相似文献   

16.
BackgroundAn outbreak of human leishmaniasis due to Leishmania infantum has been registered in an urban area of southwestern Madrid, Spain, since 2010. Entomological surveys carried out in the municipalities of Fuenlabrada, Leganés, Getafe and Humanes de Madrid showed that Phlebotomus perniciosus is the only potential vector. In this work, an intensive molecular surveillance was performed in P. perniciosus females captured in the region between 2012 and 2018.Methodology/Principal findingsA total of 1805 P. perniciosus females were analyzed for Leishmania infection, and 1189 of them also for bloodmeal identification. Eleven different species of vertebrate were detected by amplification and subsequent sequencing of the 359 bp cytb fragment. The most prevalent blood source identified was hare (n = 553, 46.51%), followed by rabbit (n = 262, 21.95%). Less frequent were cat (n = 45, 3.80%), human (n = 34, 2.90%), pig (n = 14, 1.20%), horse (n = 11, 0.93%), sheep (n = 3, 0.25%), rhea (n = 3, 0.25%), partridge (n = 1, 0.09%) and chicken (n = 1, 0.09%). The distribution of the blood meal sources varied between the different locations. Regarding L. infantum detection, PCR amplification of a fragment of kDNA, cpb gene and ITS1 region showed 162 positive specimens (8.97%). The highest infection rate was found in the municipality of Leganés (15.17%).ConclusionsThe results of this molecular survey in P. perniciosus, the only leishmaniasis vector in the outbreak occurred in southwestern Madrid region, showed its opportunistic blood-feeding behaviour, high infection rates and the differences between the different points. This study was an essential part of the intensive surveillance plan in the area and the results obtained have supported the implementation of control measures in the outbreak.  相似文献   

17.
Imported cases of anthroponotic cutaneous leishmaniasis due to Leishmania tropica are increasingly documented in Europe. We investigated the ability of Phlebotomus perniciosus, a competent vector of Leishmania infantum widespread in southwestern Europe, to support the growth and transmissibility of an Asian strain of L. tropica recently isolated from a refugee. Parasite growth behavior was investigated in laboratory-reared sand flies fed artificially with promastigotes as well as in sand flies infected after biting on footpad lesions induced in hamsters by promastigote inoculation. The evolution of infection was checked by gut microscopy and quantitative real-time PCR, and it was found to be similar between promastigote- and amastigote-initiated infections. In 80% of infected sand flies, despite survival and flourishing growth of promastigotes after blood digestion and defecation, either the parasites died, or failed to migrate to the foregut and/or to mature into infective forms. However, in the remaining 20% L. tropica developed into abundant metacyclic promastigotes. The quantitative real-time PCR assay detected variable loads of gut promastigotes irrespective of morphological evidence of viability or progressive/final death. Parasite transmissibility was investigated by exposing naive hamsters to P. perniciosus previously infected on chronic lesions induced in hamsters which survived to take a second blood meal. Two months post exposure, lesions developed in skin sites bitten by sand flies confirmed to harbor metacyclic promastigotes; in the following months, the presence of viable and transmissible L. tropica parasites in lesions was demonstrated by xenodiagnosis assays. Our findings support the hypothesis that, in particular epidemiological situations, P. perniciosus may play the role of an occasional L. tropica vector.  相似文献   

18.
Although Leishmania metacyclic promastigotes are generally considered resistant to human complement, studies of in vitro-cultured axenic stationary promastigotes using serum concentrations that approximate physiological plasma conditions indicate complement sensitivity. Natural Leishmania infection is caused by sand fly-inoculated promastigotes, whose complement resistance has not been analyzed systematically. We compared Leishmania susceptibility to human complement in L. infantum promastigotes derived from in vitro cultures and from sand flies. Phlebotomus perniciosus sand flies were fed with axenic promastigotes, L. infantum-infected U-937 cells, or spleen cells from L. infantum-infected hamsters. On selected days post-feeding, flies were dissected and promastigotes isolated; in addition, axenic promastigotes were obtained from culture at equivalent days of growth. In near-physiological serum concentration and temperature conditions, measurement of real-time kinetics of propidium iodide uptake showed that 90% of axenic- and sand fly-derived promastigotes were rapidly killed by complement. We found no substantial differences between promastigotes from axenic culture, those isolated from flies on different post-feeding days, or those generated in flies fed with distinct inocula. The results indicate that Leishmania susceptibility to human complement is independent of promastigote developmental stage in the sand fly mid-gut and in axenic culture.  相似文献   

19.
Leishmaniasis is caused by protozoa of the genus Leishmania and transmitted by sand flies from mammalian reservoirs to humans. In recent years, a northward spread of L. infantum from highly endemic Mediterranean countries into previously non-endemic Central European areas has been suspected based on presumed sporadic cases of autochthonous leishmaniasis. Here, we investigated whether sand flies are prevalent in Bavaria in Southern Germany, a federal state in which autochthonous cases have previously been reported. Considering the present and future climatic conditions, we determined whether Bavaria is suitable for five sand fly species with assumed spreading tendencies towards Central Europe: Phlebotomus ariasi, P. neglectus, P. perfiliewi and P. perniciosus that are known vectors for Leishmania in Europe, and P. mascittii, a suspected but not proven vector. Within Bavaria we defined sampling regions based on their climatic suitability and their spatial distance to the sites of the autochthonous cases and/or to areas of reported sand fly detection in states adjacent to Bavaria. At 155 locations in 7 sampling regions, CDC light traps were placed during 38 nights in the summers of 2009 and 2010, resulting in 202 trap-nights. All traps were negative for sand flies. The results suggest that Bavaria is not yet endemic for sand flies, but do not exclude the possibility of sporadic cases of autochthonous human or zoonotic Leishmania infections. This study, which combined methodological approaches from different disciplines, serves as reference for future surveys and risk analyses of sand flies and leishmaniasis in so far non-endemic areas of Europe.  相似文献   

20.

Background

The mode of reproduction in Leishmania spp has been argued to be essentially clonal. However, recent data (genetic analysis of populations and co-infections in sand flies) have proposed the existence of a non-obligate sexual cycle in the extracellular stage of the parasite within the sand fly vector. In this article we propose the existence of intraclonal genetic exchange in the natural vector of Leishmania infantum.

Methodology/Principal findings

We have developed transgenic L. infantum lines expressing drug resistance markers linked to green and red fluorescent reporters. We hypothesized whether those cells with identical genotype can recognize each other and mate. Both types of markers were successfully exchanged within the sand fly midgut of the natural vector Phlebotomus perniciosus when individuals from these species were fed with a mixture of parental clones. Using the yellow phenotype and drug resistance markers, we provide evidence for genetic exchange in L. infantum. The hybrid progeny appeared to be triploid based on DNA content analysis. The hybrid clone analyzed was stable throughout the complete parasite life cycle. The progress of infections by the hybrid clone in BALB/c mice caused a reduction in parasite loads in both spleen and liver, and provided weight values similar to those obtained with uninfected mice. Spleen arginase activity was also significantly reduced relative to parental strains.

Conclusions/Significance

A L. infantum hybrid lineage was obtained from intraclonal genetic exchange within the midgut of the natural vector, suggesting the ability of this parasite to recognize the same genotype and mate. The yellow hybrid progeny is stable throughout the whole parasite life cycle but with a slower virulence, which correlates well with the lower arginase activity detected both in vitro and in vivo infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号