首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oomycetes represent a unique group of plant pathogens that are phylogenetically distant from true fungi and cause significant crop losses and environmental damage. Understanding of the genetic basis of host plant susceptibility facilitates the development of novel disease resistance strategies. In this study, we report the identification of an Arabidopsis thaliana T-DNA mutant with enhanced resistance to Phytophthora parasitica with an insertion in the Raf-like mitogen-activated protein kinase kinase kinase gene Raf36. We generated additional raf36 mutants by CRISPR/Cas9 technology as well as Raf36 complementation and overexpression transformants, with consistent results of infection assays showing that Raf36 mediates Arabidopsis susceptibility to P. parasitica. Using a virus-induced gene silencing assay, we silenced Raf36 homologous genes in Nicotiana benthamiana and demonstrated by infection assays the conserved immune function of Raf36. Mutagenesis analyses indicated that the kinase activity of Raf36 is important for its immune function and interaction with MKK2, a MAPK kinase. By generating and analysing mkk2 mutants and MKK2 complementation and overexpression transformants, we found that MKK2 is a positive immune regulator in the response to Pparasitica infection. Furthermore, infection assay on mkk2 raf36 double mutant plants indicated that MKK2 is required for the raf36-conferred resistance to Pparasitica. Taken together, we identified a Raf-like kinase Raf36 as a novel plant susceptibility factor that functions upstream of MKK2 and directly targets it to negatively regulate plant resistance to Pparasitica.  相似文献   

2.
RXLR effectors encoded by Phytophthora species play a central role in pathogen–plant interactions. An understanding of the biological functions of RXLR effectors is conducive to the illumination of the pathogenic mechanisms and the development of disease control strategies. However, the virulence function of Phytophthora parasitica RXLR effectors is poorly understood. Here, we describe the identification of a P. parasitica RXLR effector gene, PPTG00121 (PpE4), which is highly transcribed during the early stages of infection. Live cell imaging of P. parasitica transformants expressing a full-length PpE4 (E4FL)-mCherry protein indicated that PpE4 is secreted and accumulates around haustoria during plant infection. Silencing of PpE4 in P. parasitica resulted in significantly reduced virulence on Nicotiana benthamiana. Transient expression of PpE4 in N. benthamiana in turn restored the pathogenicity of the PpE4-silenced lines. Furthermore, the expression of PpE4 in both N. benthamiana and Arabidopsis thaliana consistently enhanced plant susceptibility to P. parasitica. These results indicate that PpE4 contributes to pathogen infection. Finally, heterologous expression experiments showed that PpE4 triggers non-specific cell death in a variety of plants, including tobacco, tomato, potato and A. thaliana. Virus-induced gene silencing assays revealed that PpE4-induced cell death is dependent on HSP90, NPK and SGT1, suggesting that PpE4 is recognized by the plant immune system. In conclusion, PpE4 is an important virulence RXLR effector of P. parasitica and recognized by a wide range of host plants.  相似文献   

3.
4.
5.
Proteases secreted by pathogens have been shown to be important virulence factors modifying plant immunity, and cysteine proteases have been demonstrated to participate in different pathosystems. However, the virulence functions of the cysteine proteases secreted by Phytophthora parasitica are poorly understood. Using a publicly available genome database, we identified 80 cysteine proteases in P. parasitica, 21 of which were shown to be secreted. Most of the secreted cysteine proteases are conserved among different P. parasitica strains and are induced during infection. The secreted cysteine protease proteins PpCys44/45 (proteases with identical protein sequences) and PpCys69 triggered cell death on the leaves of different Nicotiana spp. A truncated mutant of PpCys44/45 lacking a signal peptide failed to trigger cell death, suggesting that PpCys44/45 functions in the apoplastic space. Analysis of three catalytic site mutants showed that the enzyme activity of PpCys44/45 is required for its ability to trigger cell death. A virus-induced gene silencing assay showed that PpCys44/45 does not induce cell death on NPK1 (Nicotiana Protein Kinase 1)-silenced Nicotiana benthamiana plants, indicating that the cell death phenotype triggered by PpCys44/45 is dependent on NPK1. PpCys44- and PpCys45-deficient double mutants showed decreased virulence, suggesting that PpCys44 and PpCys45 positively promote pathogen virulence during infection. PpCys44 and PpCys45 are important virulence factors of P. parasitica and trigger NPK1-dependent cell death in various Nicotiana spp.  相似文献   

6.
7.
RNA silencing is one of the main defence mechanisms employed by plants to fight pathogens. p19 protein encoded by the tomato bushy stunt virus (TBSVp19) is known as a suppressor of RNA silencing via siRNA sequestration to prevent the assembly of RISC. To better understand the impact of TBSVp19 on silencing and its roles in Phytophthora pathogens, we used the transient expression assay in Nicotiana benthamiana and found that the leaves expressing TBSVp19 were more susceptible to Phytophthora parasitica. Furthermore, we demonstrated that TBSVp19‐mediated plant susceptibility in N. benthamiana is dependent on RNA‐dependent RNA polymerase 6 (RDR6). We also tested the role of RNA silencing in resistance of soybean hairy roots to Phytophthora. The lesion size induced by P. sojae on TBSVp19‐expressing soybean hairy roots was slightly, but significantly larger than GFP‐expressing soybean hairy roots. Finally, the Arabidopsis gene silencing mutants ago1‐27, zip‐1, sgs3‐11 and rdr6‐11 were also examined for their resistance to P. parasitica. The results clearly showed that resistance levels of the mutants were visibly reduced compared with the wild type. Taken together, these results suggest that the gene silencing system in plants is essential for resistance to Phytophthora pathogens.  相似文献   

8.
9.
10.
Ribosomes play an integral part in plant growth, development, and defence responses. We report here the role of ribosomal protein large (RPL) subunit QM/RPL10 in nonhost disease resistance. The RPL10-silenced Nicotiana benthamiana plants showed compromised disease resistance against nonhost pathogen Pseudomonas syringae pv. tomato T1. The RNA-sequencing analysis revealed that many genes involved in defence and protein translation mechanisms were differentially affected due to silencing of NbRPL10. Arabidopsis AtRPL10 RNAi and rpl10 mutant lines showed compromised nonhost disease resistance to P. syringae pv. tomato T1 and P. syringae pv. tabaci. Overexpression of AtRPL10A in Arabidopsis resulted in reduced susceptibility against host pathogen P. syringae pv. tomato DC3000. RPL10 interacts with the RNA recognition motif protein and ribosomal proteins RPL30, RPL23, and RPS30 in the yeast two-hybrid assay. Silencing or mutants of genes encoding these RPL10-interacting proteins in N. benthamiana or Arabidopsis, respectively, also showed compromised disease resistance to nonhost pathogens. These results suggest that QM/RPL10 positively regulates the defence and translation-associated genes during nonhost pathogen infection.  相似文献   

11.
Alpha-momorcharin (α-MMC), a member of the plant ribosomal inactivating proteins (RIPs) family, has been proven to exhibit important biological properties in animals, including antiviral, antimicrobial, and antitumour activities. However, the mechanism by which α-MMC increases plant resistance to viral infections remains unclear. To study the effect of α-MMC on plant viral defence and how α-MMC increases plant resistance to viruses, recombinant DNA and transgenic technologies were employed to investigate the role of α-MMC in Nicotiana benthamiana resistance to tobacco mosaic virus (TMV) infection. Treatment with α-MMC produced through DNA recombinant technology or overexpression of α-MMC mediated by transgenic technology alleviated TMV-induced oxidative damage and reduced the accumulation of reactive oxygen species (ROS) during TMV-green fluorescent protein infection of N. benthamiana. There was a significant decrease in TMV replication in the upper leaves following local α-MMC treatment and in α-MMC-overexpressing plants relative to control plants. These results suggest that application or overexpression of α-MMC in N. benthamiana increases resistance to TMV infection. Finally, our results showed that overexpression of α-MMC up-regulated the expression of ROS scavenging-related genes. α-MMC confers resistance to TMV infection by means of modulating ROS homeostasis through controlling the expression of antioxidant enzyme-encoding genes. Overall, our study revealed a new crosstalk mechanism between α-MMC and ROS during resistance to viral infection and provides a framework to understand the molecular mechanisms of α-MMC in plant defence against viral pathogens.  相似文献   

12.
13.
14.
The hypersensitive‐induced reaction (HIR) gene family is associated with the hypersensitive response (HR) that is a part of the plant defense system against bacterial and fungal pathogens. The involvement of HIR genes in response to viral pathogens has not yet been studied. We now report that the HIR3 genes of Nicotiana benthamiana and Oryza sativa (rice) were upregulated following rice stripe virus (RSV) infection. Silencing of HIR3s in N. benthamiana resulted in an increased accumulation of RSV RNAs, whereas overexpression of HIR3s in N. benthamiana or rice reduced the expression of RSV RNAs and decreased symptom severity, while also conferring resistance to Turnip mosaic virus, Potato virus X, and the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. Silencing of HIR3 genes in N. benthamiana reduced the content of salicylic acid (SA) and was accompanied by the downregulated expression of genes in the SA pathway. Transient expression of the two HIR3 gene homologs from N. benthamiana or the rice HIR3 gene in N. benthamiana leaves caused cell death and an accumulation of SA, but did not do so in EDS1‐silenced plants or in plants expressing NahG. The results indicate that HIR3 contributes to plant basal resistance via an EDS1‐ and SA‐dependent pathway.  相似文献   

15.
16.
Phytophthora species can infect hundreds of different plants, including many important crops, causing a number of agriculturally relevant diseases. A key feature of attempted pathogen infection is the rapid production of the redox active molecule nitric oxide (NO). However, the potential role(s) of NO in plant resistance against Phytophthora is relatively unexplored. Here we show that the level of NO accumulation is crucial for basal resistance in Arabidopsis against Phytophthora parasitica. Counterintuitively, both relatively low or relatively high NO accumulation leads to reduced resistance against P. parasitica. S-nitrosylation, the addition of a NO group to a protein cysteine thiol to form an S-nitrosothiol, is an important route for NO bioactivity and this process is regulated predominantly by S-nitrosoglutathione reductase 1 (GSNOR1). Loss-of-function mutations in GSNOR1 disable both salicylic acid accumulation and associated signalling, and also the production of reactive oxygen species, leading to susceptibility towards P. parasitica. Significantly, we also demonstrate that secreted proteins from P. parasitica can inhibit Arabidopsis GSNOR1 activity.  相似文献   

17.
The integration and structure of a transgene locus can have profound effects on the level and stability of transgene expression. We screened 28 transgenic birch (Betula platyphylla Suk.) lines transformed with an insect-resistance gene (bgt) using Agrobacterium tumefaciens. Among the transgenic plants, the copy number of transgene varied from one to four. A rearrangement or partial deletion had occurred in the process of T-DNA integration. T-DNA repeat formation, detected by reverse primer PCR, was found among randomly screened transgenic lines. Sequencing of the junctions between the T-DNA inserts revealed deletions of 19–589 bp and an additional 45 bp filler DNA sequence was inserted between the T-DNA repeats at one junction. Micro-homologous sequences (1–6 bp) were observed in the junctions between the T-DNA inserts. Using SiteFinding-PCR, a relatively high percentage of AT value was found for the flanking regions. Deletion of the right border repeat was observed in 12/18 of the T-DNA/plant junctions analyzed. The number of nucleotides deleted varied from 3 to 712. Deletions of 17–89 bp were observed in all left T-DNA/plant junctions analyzed. A vector backbone DNA sequence in the transgene loci was also detected using primer pairs outside the left and right T-DNA borders. Approximately 89.3% of the lines contained some vector backbone DNA. These observations revealed that it is important to check the specificity of the integration. A mechanism of T-DNA transport and integration is proposed for this long-lived tree species.  相似文献   

18.
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in plant responses to both biotic and abiotic stress. A screen of a Nicotiana benthamiana cDNA virus-induced gene silencing (VIGS) library for altered plant responses to inoculation with Phytophthora infestans previously identified an NbMKK gene, encoding a clade D MAPKK that we renamed as NbMKK5, which is involved in immunity to P. infestans. To study the role of the potato orthologous gene, referred to as StMKK5, in the response to P. infestans, we transiently overexpressed StMKK5 in N. benthamiana and observed that cell death occurred at 2 days postinfiltration. Silencing of the highly conserved eukaryotic protein SGT1 delayed the StMKK5-induced cell death, whereas silencing of the MAPK-encoding gene NbSIPK completely abolished the cell death response. Further investigations showed that StMKK5 interacts with, and directly phosphorylates, StSIPK. Furthermore, both StMKK5 and StSIPK trigger salicylic acid (SA)- and ethylene (Eth)-related gene expression, and co-expression of the salicylate hydroxylase NahG with the negative regulator of Eth signalling CTR1 hampers StSIPK-triggered cell death. This observation indicates that the cell death triggered by StMKK5-StSIPK is dependent on the combination of SA- and Eth-signalling. By introducing point mutations, we showed that the kinase activity of both StMKK5 and StSIPK is required for triggering cell death. Genetic analysis showed that StMKK5 depends on StSIPK to trigger plant resistance. Thus, our results define a potato StMKK5-SIPK module that positively regulates immunity to P. infestans via activation of both the SA and Eth signalling pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号