首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxynitrite formation and function in plants   总被引:1,自引:0,他引:1  
Peroxynitrite (ONOO) is a reactive nitrogen species formed when nitric oxide (NO) reacts with the superoxide anion (O2). It was first identified as a mediator of cell death in animals but was later shown to act as a positive regulator of cell signaling, mainly through the posttranslational modification of proteins by tyrosine nitration. In plants, peroxynitrite is not involved in NO-mediated cell death and its physiological function is poorly understood. However, it is emerging as a potential signaling molecule during the induction of defense responses against pathogens and this could be mediated by the selective nitration of tyrosine residues in a small number of proteins. In this review we discuss the general role of tyrosine nitration in plants and evaluate recent evidence suggesting that peroxynitrite is an effector of NO-mediated signaling following pathogen infection.  相似文献   

2.
Nitric oxide (NO) is a widespread signaling molecule, and numerous targets of its action exist in plants. Whereas the activity of NO in erythrocytes, microorganisms, and invertebrates has been shown to be regulated by several hemoglobins, the function of plant hemoglobins in NO detoxification has not yet been elucidated. Here, we show that Arabidopsis thaliana nonsymbiotic hemoglobin AHb1 scavenges NO through production of S-nitrosohemoglobin and reduces NO emission under hypoxic stress, indicating its role in NO detoxification. However, AHb1 does not affect NO-mediated hypersensitive cell death in response to avirulent Pseudomonas syringae, suggesting that it is not involved in the removal of NO bursts originated from acute responses when NO mediates crucial defense signaling functions.  相似文献   

3.
Nitric oxide (NO) plays an important role in acute ischemic preconditioning (IPC). In addition to activating soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) signaling pathways, NO-mediated protein S-nitros(yl)ation (SNO) has been recently shown to play an essential role in cardioprotection against ischemia–reperfusion (I/R) injury. In our previous studies, we have shown that IPC-induced cardioprotection could be blocked by treatment with either N-nitro-L-arginine methyl ester (L-NAME, a constitutive NO synthase inhibitor) or ascorbate (a reducing agent to decompose SNO). To clarify NO-mediated sGC/cGMP/PKG-dependent or -independent (i.e., SNO) signaling involved in IPC-induced cardioprotection, mouse hearts were Langendorff-perfused in the dark to prevent SNO decomposition by light exposure. Treatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, a highly selective inhibitor of sGC) or KT5823 (a potent and selective inhibitor of PKG) did not abolish IPC-induced acute protection, suggesting that the sGC/cGMP/PKG signaling pathway does not play an important role in NO-mediated cardioprotective signaling during acute IPC. In addition, treatment with ODQ in IPC hearts provided an additional protective effect on functional recovery, in parallel with a higher SNO level in these ODQ+IPC hearts. In conclusion, these results suggest that the protective effect of NO is not related primarily to activation of the sGC/cGMP/PKG signaling pathway, but rather through SNO signaling in IPC-induced acute cardioprotection.  相似文献   

4.
5.
Nitric oxide (NO) is a small, uncharged molecule, which is primarily generated by the nitric oxide synthase (NOS) family of proteins, including neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). NO has been implicated in diverse roles in biological systems, such as the regulation of cell death and survival signaling pathways of a variety of cell types, including neuronal cells. In this study, we determined that the NO generated from l-arginine by ectopically overexpressed nNOS in HEK293 cells exerted an inhibitory effect against the activity of c-Jun N-terminal kinase (JNK), an important modulator of neuronal cell death and survival signaling pathways. NO repressed the activation of JNK, but exerted no significant effects on the activities of SEK1/MKK4 and MEKK1, which are the upstream MAPKK and MAPKKK of JNK1, respectively. This NO-mediated inhibition of JNK1 was not affected by the addition of ODQ, a guanylyl cyclase inhibitor, indicating that the effect is independent of the level of cyclic GMP. In an in vitro kinase assay, SNAP, a NO donor, was shown to directly suppress JNK1 activity, thereby indicating that NO is a direct modulator of JNK1. Moreover, the NO-mediated suppression of JNK1 was demonstrated to be redox-sensitive and dependent on the cysteine-116 in JNK1. Finally, according to the results of an immunohistochemical study using rat striatal neurons, we were able to determine that nNOS-expressing neurons evidenced significantly reduced JNK1 activation. Collectively, these data suggest that JNK1 is regulated by nNOS-mediated NO production in neurons, via a thiol-redox-sensitive mechanism.  相似文献   

6.
7.
Redox regulation of cell cycle progression during nitric oxide (NO) mediated cytostasis is not well-understood. In this study, we investigated the role of the intracellular antioxidant glutathione (GSH) in regulating specific signaling events that are associated with NO-mediated cell cycle arrest. Manipulation of intracellular GSH content through pharmacological inhibition of glutamate-cysteine ligase (GCL) indicated that GSH depletion potentiated nitrosative stress, DNA damage, phosphorylation of the tumor suppressor p53 (Ser-18) and upregulation of p21(cip1/waf1) upon NO stimulation. However, we found that neither overexpression of a dominant negative p53 nor pharmacological inhibition of p53 with cyclic pifithrin-alpha (cPFT-alpha) was sufficient to reverse NO-mediated cell cycle arrest or hypophosphorylation of retinoblastoma protein (Rb). We found that the decrease in cyclin D1 levels induced by NO was GSH-sensitive implying that the redox regulation of NO-mediated cytostasis was a multifaceted process and that both p53/p21(cip1/waf1) and p53 independent cyclin D1 pathways were involved. Together, our results demonstrate that GSH serves as an important component of cellular protective mechanisms against NO-derived nitrosative stress to regulate DNA damage checkpoint.  相似文献   

8.
The vascular endothelium plays a critical role in vascular health by controlling arterial diameter, regulating local cell growth, and protecting blood vessels from the deleterious consequences of platelet aggregation and activation of inflammatory responses. Circulating chemical mediators and physical forces act directly on the endothelium to release diffusible relaxing factors, such as nitric oxide (NO), and to elicit hyperpolarization of the endothelial cell membrane potential, which can spread to the surrounding smooth muscle cells via gap junctions. Endothelial hyperpolarization, mediated by activation of calcium-activated potassium (K(Ca)) channels, has generally been regarded as a distinct pathway for smooth muscle relaxation. However, recent evidence supports a role for endothelial K(Ca) channels in production of endothelium-derived NO, and indicates that pharmacological activation of these channels can enhance NO-mediated responses. In this review we summarize the current data on the functional role of endothelial K(Ca) channels in regulating NO-mediated changes in arterial diameter and NO production, and explore the tempting possibility that these channels may represent a novel avenue for therapeutic intervention in conditions associated with reduced NO availability such as hypertension, hypercholesterolemia, smoking, and diabetes mellitus.  相似文献   

9.
Nitric oxide (NO) is an important signaling molecule that interacts with different targets depending on its redox state. NO can interact with thiol groups resulting in S-nitrosylation of proteins, but the functional implications of this modification are not yet fully understood. We have reported that treatment of RAW 264.7 cells with NO caused a decrease in levels of iron regulatory protein 2 (IRP2), which binds to iron-responsive elements present in untranslated regions of mRNAs for several proteins involved in iron metabolism. In this study, we show that NO causes S-nitrosylation of IRP2, both in vitro and in vivo, and this modification leads to IRP2 ubiquitination followed by its degradation in the proteasome. Moreover, mutation of one cysteine (C178S) prevents NO-mediated degradation of IRP2. Hence, S-nitrosylation is a novel signal for IRP2 degradation via the ubiquitin-proteasome pathway.  相似文献   

10.
11.
Nitric oxide signaling during myocardial angiogenesis   总被引:2,自引:0,他引:2  
Ischemic heart disease develops as a consequence of coronary atherosclerotic lesion formation. Coronary collateral vessels and microvascular angiogenesis develop as an adaptive response to myocardial ischemia, which ameliorates the function of the damaged heart. Angiogenesis, the formation of new blood vessels from pre-existing vascular bed, is of paramount importance in the maintenance of vascular integrity both in the repair process of damaged tissue and in the formation of collateral vessels in response to tissue ischemia. Angiogenesis is modulated by a multitude of cytokines/chemokines and growth factors. In this regard, angiogenesis cannot be viewed as a single process. It is likely that different mediators are involved in different phases of angiogenesis. Vascular endothelial cells (ECs) produce nitric oxide (NO), an endothelium-derived labile molecule, which maintains vascular homeostasis and thereby prevents vascular atherosclerotic changes. In patients with ischemic heart disease, the release of endothelium-derived NO is decreased, which plays an important role in the atherosclerotic disease progression. In recent years, endothelium-derived NO has been shown to modulate angiogenesis in vitro and in vivo. In this review, we summarize recent progress in the field of the NO-mediated regulation of postnatal angiogenesis, particularly in response to myocardial ischemia.  相似文献   

12.
Nitrogen monoxide (NO) affects cellular iron metabolism due to its high affinity for this metal ion. Indeed, NO has been shown to increase the mRNA binding activity of the iron-regulatory protein 1, which is a major regulator of iron homeostasis. Recently, we have shown that NO generators increase (59)Fe efflux from cells prelabeled with (59)Fe-transferrin (Wardrop, S. L., Watts, R. N., and Richardson, D. R. (2000) Biochemistry 39, 2748-2758). The mechanism involved in this process remains unknown, and in this investigation we demonstrate that it is potentiated upon adding d-glucose (d-Glc) to the reincubation medium. In d-Glc-free or d-Glc-containing media, 5.6 and 16.5% of cellular (59)Fe was released, respectively, in the presence of S-nitrosoglutathione. This difference in (59)Fe release was observed with a variety of NO generators and cell types and was not due to a change in cell viability. Kinetic studies showed that d-Glc had no effect on the rate of NO production by NO generators. Moreover, only the metabolizable monosaccharides d-Glc and d-mannose could stimulate NO-mediated (59)Fe mobilization, whereas other sugars not easily metabolized by fibroblasts had no effect. Hence, metabolism of the monosaccharides was essential to increase NO-mediated (59)Fe release. Incubation of cells with the citric acid cycle intermediates, citrate and pyruvate, did not enhance NO-mediated (59)Fe release. Significantly, preincubation with the GSH-depleting agents, l-buthionine-[S,R]-sulfoximine or diethyl maleate, prevented NO-mediated (59)Fe mobilization. This effect was reversed by incubating cells with N-acetyl-l-cysteine that reconstitutes GSH. These results indicate that GSH levels are essential for NO-mediated (59)Fe efflux. Hence, d-Glc metabolism via the hexose monophosphate shunt resulting in the generation of GSH may be essential for NO-mediated (59)Fe release. These results have important implications for intracellular signaling by NO and also NO-mediated cytotoxicity of activated macrophages that is due, in part, to iron release from tumor target cells.  相似文献   

13.
Given their sessile nature, plants continuously face unfavorable conditions throughout their life cycle, including water scarcity, extreme temperatures and soil pollution. Among all, metal(loid)s are one of the main classes of contaminants worldwide, posing a serious threat to plant growth and development. When in excess, metals which include both essential and non-essential elements, quickly become phytotoxic, inducing the occurrence of oxidative stress. In this way, in order to ensure food production and safety, attempts to enhance plant tolerance to metal(loid)s are urgently needed. Nitric oxide (NO) is recognized as a signaling molecule, highly involved in multiple physiological events, like the response of plants to abiotic stress. Thus, substantial efforts have been made to assess NO potential in alleviating metal-induced oxidative stress in plants. In this review, an updated overview of NO-mediated protection against metal toxicity is provided. After carefully reviewing NO biosynthetic pathways, focus was given to the interaction between NO and the redox homeostasis followed by photosynthetic performance of plants under metal excess.  相似文献   

14.
15.
Nitric oxide (NO) is an important signal molecule in stress responses. Accumulation of secondary metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. NO has been reported to play important roles in elicitor-induced secondary metabolite production in tissue and cell cultures of medicinal plants. Better understanding of NO role in the biosynthesis of such metabolites is very important for optimizing the commercial production of those pharmaceutically significant secondary metabolites. This paper summarizes progress made on several aspects of NO signal leading to the production of plant secondary metabolites, including various abiotic and biotic elicitors that induce NO production, elicitor-triggered NO generation cascades, the impact of NO on growth development and programmed cell death in medicinal plants, and NO-mediated regulation of the biosynthetic pathways of such metabolites. Cross-talks among NO signaling and reactive oxygen species, salicylic acid, and jasmonic acid are discussed. Some perspectives on the application of NO donors for induction of the secondary metabolite accumulation in plant cultures are also presented.  相似文献   

16.
Nitric oxide (NO) is a potent bioactive molecule produced in the presence of NO synthase (NOS) enzymes, which mediates numerous physiological functions under constitutive conditions. Sustained overproduction of NO (and NO-reaction products), typically under inductive conditions, can lead to cell cycle arrest and cellular apoptosis. Furthermore, carcinogenesis may result from mutational events following NO-mediated DNA damage and hindrance to DNA repair (e.g., mutation of tumour-suppressor gene p53). In a majority of human and experimental tumours, tumour-derived NO appears to stimulate tumour progression; however, for a minority of tumours, the opposite has been reported. This apparent discrepancy may be explained by differential susceptibility of tumour cells to NO-mediated cytostasis or apoptosis, and the emergence of NO-resistant and NO-dependent clones. NO-resistance may be mediated by p53 inactivation, and upregulation of cyclo-oxygenase-2 and heat shock protein 70 (HSP70). In a murine mammary tumour model, tumour-derived NO promoted tumour growth and metastasis by enhancing invasive, angiogenic, and migratory capacities of tumour cells. Invasion stimulation followed the altered balance of matrix metalloproteases and their inhibitors; migration stimulation followed activation of guanylate cyclase and MAP kinase pathways. Selective NOS inhibitors may have a therapeutic role in certain cancers.  相似文献   

17.
Nitrogen monoxide (NO) is a cytotoxic effector molecule produced by macrophages that results in Fe mobilization from tumour target cells which inhibits DNA synthesis and mitochondrial respiration. It is well known that NO has a high affinity for Fe, and we showed that NO-mediated Fe mobilization is markedly potentiated by glutathione (GSH) generated by the hexose monophosphate shunt [Watts, R.N. & Richardson, D.R. (2001) J. Biol. Chem. 276, 4724-4732]. We hypothesized that GSH completes the coordination shell of an NO[bond]Fe complex that is released from the cell. In this report we have extended our studies to further characterize the mechanism of NO-mediated Fe mobilization. Native PAGE 59Fe-autoradiography shows that NO decreased ferritin-59Fe levels in cells prelabelled with [59Fe]transferrin. In prelabelled cells, ferritin-59Fe levels increased 3.5-fold when cells were reincubated with control media between 30 and 240 min. In contrast, when cells were reincubated with NO, ferritin-59Fe levels decreased 10-fold compared with control cells after a 240-min reincubation. However, NO could not remove Fe from ferritin in cell lysates. Our data suggest that NO intercepts 59Fe on route to ferritin, and indirectly facilitates removal of 59Fe from the protein. Studies using the GSH-depleting agent, L-buthionine-(S,R)-sulphoximine, indicated that the reduction in ferritin-59Fe levels via NO was GSH-dependent. Competition experiments with NO and permeable chelators demonstrated that both bind a similar Fe pool. We suggest that NO requires cellular metabolism in order to effect Fe mobilization and this does not occur via passive diffusion down a concentration gradient. Based on our results, we propose a model of glucose-dependent NO-mediated Fe mobilization.  相似文献   

18.
Ischemic heart disease develops as a consequence of coronary atherosclerotic lesion formation. Coronary collateral vessels and microvascular angiogenesis develop as an adaptive response to myocardial ischemia, which ameliorates the function of the damaged heart. Angiogenesis, the formation of new blood vessels from pre-existing vascular bed, is of paramount importance in the maintenance of vascular integrity both in the repair process of damaged tissue and in the formation of collateral vessels in response to tissue ischemia. Angiogenesis is modulated by a multitude of cytokines/chemokines and growth factors. In this regard, angiogenesis cannot be viewed as a single process. It is likely that different mediators are involved in different phases of angiogenesis. Vascular endothelial cells (ECs) produce nitric oxide (NO), an endothelium-derived labile molecule, which maintains vascular homeostasis and thereby prevents vascular atherosclerotic changes. In patients with ischemic heart disease, the release of endothelium-derived NO is decreased, which plays an important role in the atherosclerotic disease progression. In recent years, endothelium-derived NO has been shown to modulate angiogenesis in vitro and in vivo. In this review, we summarize recent progress in the field of the NO-mediated regulation of postnatal angiogenesis, particularly in response to myocardial ischemia. (Mol Cell Biochem 264: 25–34, 2004)  相似文献   

19.
We hypothesized that: (a) S-nitrosylation of metallothionein (MT) is a component of pulmonary endothelial cell nitric oxide (NO) signaling that is associated with an increase in labile zinc; and (b) NO mediated increases in labile zinc in turn reduce the sensitivity of pulmonary endothelium to LPS-induced apoptosis. We used microspectrofluorometric techniques to show that exposing mouse lung endothelial cells (MLEC) to the NO-donor, S-nitrosocysteine, resulted in a 45% increase in fluorescence of the Zn2+-specific fluorophore, Zinquin, that was rapidly reversed by exposure to the Zn2+ chelator, NNN'N'-tetrakis-(2-pyridylmethyl)ethylenediamine; TPEN). The absence of a NO-mediated increase in labile Zn2+ in MLEC from MT-I and -II knockout mice inferred a critical role for MT in the regulation of Zn2+ homeostasis by NO. Furthermore, we found that prior exposure of cultured endothelial cells from sheep pulmonary artery (SPAEC), to the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP) reduced their sensitivity to lipopolysaccharide (LPS) induced apoptosis. The anti-apoptotic effects of NO were significantly inhibited by Zn2+ chelation with low doses of TPEN (10 microM). Collectively, these data suggest that S-nitrosylation of MT is associated with an increase in labile (TPEN chelatable) zinc and NO-mediated MT dependent zinc release is associated with reduced sensitivity to LPS-induced apoptosis in pulmonary endothelium.  相似文献   

20.
Previous studies have demonstrated that auxin (indole-3-acetic acid) and nitric oxide (NO) are plant growth regulators that coordinate several plant physiological responses determining root architecture. Nonetheless, the way in which these factors interact to affect these growth and developmental processes is not well understood. The Arabidopsis thaliana F-box proteins TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) are auxin receptors that mediate degradation of AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) repressors to induce auxin-regulated responses. A broad spectrum of NO-mediated protein modifications are known in eukaryotic cells. Here, we provide evidence that NO donors increase auxin-dependent gene expression while NO depletion blocks Aux/IAA protein degradation. NO also enhances TIR1-Aux/IAA interaction as evidenced by pull-down and two-hybrid assays. In addition, we provide evidence for NO-mediated modulation of auxin signaling through S-nitrosylation of the TIR1 auxin receptor. S-nitrosylation of cysteine is a redox-based post-translational modification that contributes to the complexity of the cellular proteome. We show that TIR1 C140 is a critical residue for TIR1-Aux/IAA interaction and TIR1 function. These results suggest that TIR1 S-nitrosylation enhances TIR1-Aux/IAA interaction, facilitating Aux/IAA degradation and subsequently promoting activation of gene expression. Our findings underline the importance of NO in phytohormone signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号