首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viral class 1 RNase III involved in suppression of RNA silencing   总被引:2,自引:0,他引:2  
Double-stranded RNA (dsRNA)-specific endonucleases belonging to RNase III classes 3 and 2 process dsRNA precursors to small interfering RNA (siRNA) or microRNA, respectively, thereby initiating and amplifying RNA silencing-based antiviral defense and gene regulation in eukaryotic cells. However, we now provide evidence that a class 1 RNase III is involved in suppression of RNA silencing. The single-stranded RNA genome of sweet potato chlorotic stunt virus (SPCSV) encodes an RNase III (RNase3) homologous to putative class 1 RNase IIIs of unknown function in rice and Arabidopsis. We show that RNase3 has dsRNA-specific endonuclease activity that enhances the RNA-silencing suppression activity of another protein (p22) encoded by SPCSV. RNase3 and p22 coexpression reduced siRNA accumulation more efficiently than p22 alone in Nicotiana benthamiana leaves expressing a strong silencing inducer (i.e., dsRNA). RNase3 did not cause intracellular silencing suppression or reduce accumulation of siRNA in the absence of p22 or enhance silencing suppression activity of a protein encoded by a heterologous virus. No other known RNA virus encodes an RNase III or uses two independent proteins cooperatively for RNA silencing suppression.  相似文献   

2.
Sweet potato (Ipomoea batatas) is one of the most important crops in the world, and its production rate is mainly decreased by the sweet potato virus disease (SPVD) caused by the co-infection of sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus. However, methods for improving SPVD resistance have not been established. Thus, this study aimed to enhance SPVD resistance by targeting one of its important pathogenesis-related factors (i.e., SPCSV-RNase3) by using the CRISPR-Cas13 technique. First, the RNA targeting activity of four CRISPR-Cas13 variants were compared using a transient expression system in Nicotiana benthamiana. LwaCas13a and RfxCas13d had more efficient RNA and RNA virus targeting activity than PspCas13b and LshCas13a. Driven by the pCmYLCV promoter for the expression of gRNAs, RfxCas13d exhibited higher RNA targeting activity than that driven by the pAtU6 promoter. Furthermore, the targeting of SPCSV-RNase3 using the LwaCas13a system inhibited its RNA silencing suppressor activity and recovered the RNA silencing activity in N. benthamiana leaf cells. Compared with the wild type, transgenic N. benthamiana plants carrying an RNase3-targeted LwaCas13a system exhibited enhanced resistance against turnip mosaic virus TuMV-GFP and cucumber mosaic virus CMV-RNase3 co-infection. Moreover, transgenic sweet potato plants carrying an RNase3-targeted RfxCas13d system exhibited substantially improved SPVD resistance. This method may contribute to the development of SPVD immune germplasm and the enhancement of sweet potato production in SPVD-prevalent regions.  相似文献   

3.
Three hundred and ninety‐four sweet potato accessions from Latin America and East Africa were screened by polymerase chain reaction (PCR) for the presence of begomoviruses, and 46 were found to be positive. All were symptomless in sweet potato and generated leaf curling and/or chlorosis in Ipomoea setosa. The five most divergent isolates, based on complete genome sequences, were used to study interactions with Sweet potato chlorotic stunt virus (SPCSV), known to cause synergistic diseases with other viruses. Co‐infections led to increased titres of begomoviruses and decreased titres of SPCSV in all cases, although the extent of the changes varied notably between begomovirus isolates. Symptoms of leaf curling only developed temporarily in combination with isolate StV1 and coincided with the presence of the highest begomovirus concentrations in the plant. Small interfering RNA (siRNA) sequence analysis revealed that co‐infection of SPCSV with isolate StV1 led to relatively increased siRNA targeting of the central part of the SPCSV genome and a reduction in targeting of the genomic ends, but no changes to the targeting of StV1 relative to single infection of either virus. These changes were not observed in the interaction between SPCSV and the RNA virus Sweet potato feathery mottle virus (genus Potyvirus), implying specific effects of begomoviruses on RNA silencing of SPCSV in dually infected plants. Infection in RNase3‐expressing transgenic plants showed that this protein was sufficient to mediate this synergistic interaction with DNA viruses, similar to RNA viruses, but exposed distinct effects on RNA silencing when RNase3 was expressed from its native virus, or constitutively from a transgene, despite a similar pathogenic outcome.  相似文献   

4.
5.
Sweet potato virus disease (SPVD), the most harmful disease of sweet potatoes in East Africa, is caused by mixed infection with sweet potato feathery mottle potyvirus (SPFMV) and sweet potato chlorotic stunt crinivirus (SPCSV). Wild Ipomoea spp. native to East Africa (J cairica, I. hildebrandtii, I. involucra and J wightii) were graft-inoculated with SPVD-affected sweet potato scions. Inoculated plants were monitored for symptom development and tested for SPFMV and SPCSV by grafting to the indicator plant J setosa, and by enzyme-linked immunosorbent assay (ELISA). Virus-free scions of sweet potato cv. Jersey were grafted onto these wild Ipomoea spp. in the field, and scions collected 3 wk later were rooted in the greenhouse and tested for viruses using serological tests and bioassays. In all virus tests, J cairica and J involucra were not infected with either SPFMV or SPCSV. J wightii was infected with SPFMV, but not SPCSV, in the field and following experimental inoculation; J hildebrandtii was infected with SPCSV, but not SPFMV, following experimental inoculation. These data provide the first evidence of East African wild Ipomoea germplasm resistant to the viruses causing SPVD.  相似文献   

6.
A survey of sweet potato virus diseases was conducted in the major sweet potato production areas in low, medium and high altitude zones of Rwanda. A total of 205 symptomatic and 103 asymptomatic samples were collected from 51 sweet potato fields and assayed for Sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato mild mottle virus (SPMMV), Sweet potato chlorotic fleck virus (SPCFV), Sweet potato latent virus (SwPLV), Sweet potato caulimo‐like virus (SPCaLV) and Cucumber mosaic virus (CMV) using nitrocellulose membrane enzyme‐linked immunosorbent assay. The viruses detected in the samples were SPFMV, SPMMV, SPCSV, SPCFV and SwPLV. Viruses were detected in 83% and 31% of the symptomatic and asymptomatic samples, respectively. SPFMV was detected in 49% of the samples. SPCSV, the second most common virus, was detected in 28% of samples collected from 73% of the fields. About 19% of the samples were tested positive for SPMMV. Thirteen combinations of multiple virus infections were detected in the samples. Viruses were detected in samples from all the fields surveyed, and the frequency of detection was greatest in samples from low altitude zones.  相似文献   

7.
Lalonde MS  Zuo Y  Zhang J  Gong X  Wu S  Malhotra A  Li Z 《RNA (New York, N.Y.)》2007,13(11):1957-1968
Mycoplasma genitalium, a small bacterium having minimal genome size, has only one identified exoribonuclease, RNase R (MgR). We have purified MgR to homogeneity, and compared its RNA degradative properties to those of its Escherichia coli homologs RNase R (EcR) and RNase II (EcII). MgR is active on a number of substrates including oligoribonucleotides, poly(A), rRNA, and precursors to tRNA. Unlike EcR, which degrades rRNA and pre-tRNA without formation of intermediate products, MgR appears sensitive to certain RNA structural features and forms specific products from these stable RNA substrates. The 3'-ends of two MgR degradation products of 23S rRNA were mapped by RT-PCR to positions 2499 and 2553, each being 1 nucleotide downstream of a 2'-O-methylation site. The sensitivity of MgR to ribose methylation is further demonstrated by the degradation patterns of 16S rRNA and a synthetic methylated oligoribonucleotide. Remarkably, MgR removes the 3'-trailer sequence from a pre-tRNA, generating product with the mature 3'-end more efficiently than EcII does. In contrast, EcR degrades this pre-tRNA without the formation of specific products. Our results suggest that MgR shares some properties of both EcR and EcII and can carry out a broad range of RNA processing and degradative functions.  相似文献   

8.
Certain RNA and DNA viruses that infect plants, insects, fish or poikilothermic animals encode Class 1 RNaseIII endoribonuclease-like proteins. dsRNA-specific endoribonuclease activity of the RNaseIII of rock bream iridovirus infecting fish and Sweet potato chlorotic stunt crinivirus (SPCSV) infecting plants has been shown. Suppression of the host antiviral RNA interference (RNAi) pathway has been documented with the RNaseIII of SPCSV and Heliothis virescens ascovirus infecting insects. Suppression of RNAi by the viral RNaseIIIs in non-host organisms of different kingdoms is not known. Here we expressed PPR3, the RNaseIII of Pike-perch iridovirus, in the non-hosts Nicotiana benthamiana (plant) and Caenorhabditis elegans (nematode) and found that it cleaves double-stranded small interfering RNA (ds-siRNA) molecules that are pivotal in the host RNA interference (RNAi) pathway and thereby suppresses RNAi in non-host tissues. In N. benthamiana, PPR3 enhanced accumulation of Tobacco rattle tobravirus RNA1 replicon lacking the 16K RNAi suppressor. Furthermore, PPR3 suppressed single-stranded RNA (ssRNA)—mediated RNAi and rescued replication of Flock House virus RNA1 replicon lacking the B2 RNAi suppressor in C. elegans. Suppression of RNAi was debilitated with the catalytically compromised mutant PPR3-Ala. However, the RNaseIII (CSR3) produced by SPCSV, which cleaves ds-siRNA and counteracts antiviral RNAi in plants, failed to suppress ssRNA-mediated RNAi in C. elegans. In leaves of N. benthamiana, PPR3 suppressed RNAi induced by ssRNA and dsRNA and reversed silencing; CSR3, however, suppressed only RNAi induced by ssRNA and was unable to reverse silencing. Neither PPR3 nor CSR3 suppressed antisense-mediated RNAi in Drosophila melanogaster. These results show that the RNaseIII enzymes of RNA and DNA viruses suppress RNAi, which requires catalytic activities of RNaseIII. In contrast to other viral silencing suppression proteins, the RNaseIII enzymes are homologous in unrelated RNA and DNA viruses and can be detected in viral genomes using gene modeling and protein structure prediction programs.  相似文献   

9.
Aspects of resistance to sweet potato virus disease in sweet potato   总被引:3,自引:0,他引:3  
In field trials during the first and the second rainy season of 1996 in Uganda, whiteflies were similarly abundant and aphids were absent on three clones of sweet potato (NIS-93–63, cv. Tanzania and cv. New Kawogo) although the three clones differed considerably in their resistance to sweet potato virus disease (SPVD), a complex disease resulting from infection by both the aphid-borne sweet potato feathery mottle virus (SPFMV) and the whitefly-borne sweet potato chlorotic stunt virus (SPCSV). This suggests that vector resistance does not determine the relative SPVD resistance of these genotypes. SPFMV alone had only a low virus titre in sweet potato cvs Tanzania and New Kawogo, became increasingly difficult to detect in plants of these cultivars and was seldom acquired by aphids. However, this resistance to SPFMV was not apparent in plants which were also infected with SPCSV. Plants then had a high SPFMV titre, appeared unable to eliminate SPFMV and provided good sources for aphids to acquire it.  相似文献   

10.

Background

The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae) encodes a Class 1 RNase III (RNase3), a putative hydrophobic protein (p7) and a 22-kDa protein (p22) from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas) virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied.

Methodology/Principal Findings

Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae) in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA) strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae) and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b) encoding an RNase3 homolog (<56% identity to SPCSV RNase3) able to suppresses sense-mediated RNA silencing was detected in I. sinensis.

Conclusions/Significance

SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in sweetpotato. A second virus encoding an RNase3-like RNA silencing suppressor was detected. Overall, results provided many novel and important insights into evolutionary biology of SPCSV.  相似文献   

11.
Multiple infections of Sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato virus G (SPVG) and Sweet potato mild mottle virus (SPMMV) cause a devastating synergistic disease complex of sweet potato (Ipomoea batatas Lam.) in KwaZulu-Natal, South Africa. In order to address the problem of multiple virus infections and synergism, this study aimed to develop transgenic sweet potato (cv. Blesbok) plants with broad virus resistance. Coat protein gene segments of SPFMV, SPCSV, SPVG and SPMMV were used to induce gene silencing in transgenic sweet potato. Transformation of apical tips of sweet potato cv. Blesbok was achieved by using Agrobacterium tumefaciens strain LBA4404 harboring the expression cassette. Polymerase chain reaction and Southern blot analyses showed integration of the transgenes occurred in six of the 24 putative transgenic plants and that all plants seemed to correspond to the same transformation event. The six transgenic plants were challenged by graft inoculation with SPFMV, SPCSV, SPVG and SPMMV-infected Ipomoea setosa Ker. Although virus presence was detected using nitrocellulose enzyme-linked immunosorbent assay, all transgenic plants displayed delayed and milder symptoms of chlorosis and mottling of lower leaves when compared to the untransformed control plants. These results warrant further investigation on resistance to virus infection under field conditions.  相似文献   

12.
13.
Identification and distribution of viruses infecting sweet potato in Kenya   总被引:2,自引:0,他引:2  
Four hundred and forty-eight symptomatic and 638 asymptomatic samples were collected from sweet potato fields throughout Kenya and analysed serologically using antibodies to Sweet potato feathery mottle virus (SPFMV), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato mild mottle virus (SPMMV), Cucumber mosaic virus (CMV), Sweet potato chlorotic fleck virus (SPCFV), Sweet potato latent virus (SwPLV), Sweet potato caulimo-like virus (SPCaLV), Sweet potato mild speckling virus (SPMSV) and C-6 virus in enzyme-linked immunosorbent assays (ELISA). Only SPFMV, SPMMV, SPCSV, and SPCFV were detected. Ninety-two percent and 25% of the symptomatic and asymptomatic plants respectively tested positive for at least one of these viruses. Virus-infected plants were collected from 89% of the fields. SPFMV was the most common and the most widespread, detected in 74% of the symptomatic plants and 86% of fields surveyed. SPCSV was also very common, being detected in 38% of the symptomatic plants and in 50% of the fields surveyed. SPMMV and SPCFV were detected in only 11% and 3% of the symptomatic plant samples respectively. Eight different combinations of these four viruses were found in individual plants. The combination SPFMV and SPCSV was the most common, observed in 22% of symptomatic plants. Virus combinations were rare in the asymptomatic plants tested. Incidence of virus infection was highest (18%) in Kisii district of Nyanza province and lowest (1%) in Kilifi and Malindi districts of Coast province.  相似文献   

14.
Small interfering RNA deep sequencing (SRDS) was used to detect viruses in 23 sweetpotato plants, collected from various locations in Tanzania. Alignment of small RNA reads using a MAQ program recovered genomes of viruses from five families, namely Geminiviridae (2), Closteroviridae (1), Betaflexiviridae (1), Caulimoviridae (1) and Potyviridae (1). This was in agreement with the variation of symptoms observed on sweetpotato plants in fields and screen house, which included leaf curl, vein yellowing, chlorosis, stunted growth and brown blotches. PCR was also used to confirm the occurrence of viruses associated with leaf curl and symptomless infections. A complete genome (2768 nucleotides) was obtained for a sweepovirus that was 89.9% identical to the strain of Sweet potato leaf curl Sao Paulo virus (SPLCSPV; Begomovirus) reported in South Africa. Sweepoviruses are known to undergo frequent recombinations and evidence for this was found in the SPLCSPV sequence studied. The SRDS‐based results indicated occurrence of the poorly studied Sweet potato badnavirus B (SPBV‐B) and Sweet potato badnavirus A (collectively known as Sweet potato pakakuy virus; SPPV; Caulimoviridae) in sweetpotato plants in Tanzania. A 5′‐end partial sequence (3065 nucleotides), encoding hypothetical, movement and coat proteins, was obtained and found to be 86.3% and 73.1% identical to SPBV‐B and SPBV‐A, respectively. A survey for the distribution of SPPV and Sweet potato symptomless mastrevirus 1 (SPSMV‐1) showed that these viruses were wide spread and co‐infecting sweetpotato plants in Tanzania. The importance of East Africa as a hot spot for the diversity and evolution of sweet potato viruses is discussed.  相似文献   

15.
SARS冠状病毒是引起重症急性呼吸综合症的主要原因,目前尚没有特效药物或疫苗对抗这种新病毒。RNA干涉是指双链RNA可以特异地降解细胞内同源基因的Mrna。在哺乳动物细胞中,<30bp的小双链RNA能引起RNA干涉,又可以避免干扰素反应。通过体外转录得到SARS病毒3种基因RNA依赖的RNA聚合酶、刺突蛋白及核衣壳蛋白部分片段的长双链RNA,然后用Rnase Ⅲ有限切割成长度<30bp的小干涉RNA。同时把上述3种基因片段分别连接到质粒Pgl3-Control中,得到的3个质粒Pgl-R、Pgl-S和Pgl-N可以分别在细胞内转录出荧光素酶RNA依赖的RNA聚合酶、刺突蛋白、核衣壳蛋白的杂合Mrna。上述质粒分别和相应的小干涉RNA共转染HEK293F细胞,测定荧光素酶活性,结果小干涉RNA使相应质粒表达荧光素酶的活性显著下降;用逆转录定量PCR反应测量Mrna丰度,结果表明上述小干涉RNA可以特异地降解相应的病毒基因转录物。  相似文献   

16.
17.
18.
Human Dicer contains two RNase III domains (RNase IIIa and RNase IIIb) that are responsible for the production of short interfering RNAs and microRNAs. These small RNAs induce gene silencing known as RNA interference. Here, we report the crystal structure of the C-terminal RNase III domain (RNase IIIb) of human Dicer at 2.0 Å resolution. The structure revealed that the RNase IIIb domain can form a tightly associated homodimer, which is similar to the dimers of the bacterial RNase III domains and the two RNase III domains of Giardia Dicer. Biochemical analysis showed that the RNase IIIb homodimer can cleave double-stranded RNAs (dsRNAs), and generate short dsRNAs with 2 nt 3′ overhang, which is characteristic of RNase III products. The RNase IIIb domain contained two magnesium ions per monomer around the active site. The distance between two Mg-1 ions is approximately 20.6 Å, almost identical with those observed in bacterial RNase III enzymes and Giardia Dicer, while the locations of two Mg-2 ions were not conserved at all. We presume that Mg-1 ions act as catalysts for dsRNA cleavage, while Mg-2 ions are involved in RNA binding.  相似文献   

19.
20.
Sweet potato virus disease (SPVD) was common (25–30% average incidences), and farmers recognised it as an important disease, in sweet potato crops in southern Mpigi, Masaka and Rakai Districts in Uganda, but SPVD was rare in Soroti and Tororo Districts. Whiteflies, which are the vector of sweet potato chlorotic stunt crinivirus (SPCSV) a component cause of SPVD, were correspondingly common on sweet potato crops in Mpigi and rare on crops in Tororo. However, aphids, which are the vectors of sweet potato feathery mottle potyvirus (SPFMV), the other component cause of SPVD, were not found colonising sweet potato crops, and itinerant alate aphids may be the means of transmission. Different sweet potato cultivars were predominant in the different districts surveyed and four local cultivars obtained from Kanoni in S. Mpigi, where whiteflies and SPVD were common, were more resistant to SPVD than four cultivars from Busia in Tororo District, where whiteflies and SPVD were rare. However, nationally released cultivars were even more resistant than the local cultivars from Kanoni. Yield results and interviews with farmers indicated that farmers in S. Mpigi were making compromises in their choice of cultivars to grow, some key factors being SPVD susceptibility, and the yield, taste, and marketability, duration of harvest and in-ground storability of the storage roots. These compromises need to be included in an assessment of yield losses attributable to SPVD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号