首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Borrelia burgdorferi, the causative agent of Lyme disease, is a highly motile spirochete, and motility, which is provided by its periplasmic flagella, is critical for every part of the spirochete's enzootic life cycle. Unlike externally flagellated bacteria, spirochetes possess a unique periplasmic flagellar structure called the collar. This spirochete‐specific novel component is linked to the flagellar basal body; however, nothing is known about the proteins encoding the collar or their function in any spirochete. To identify a collar protein and determine its function, we employed a comprehensive strategy that included genetic, biochemical, and microscopic analyses. We found that BB0286 (FlbB) is a novel flagellar motor protein, which is located around the flagellar basal body. Deletion of bb0286 has a profound effect on collar formation, assembly of other flagellar structures, morphology, and motility of the spirochete. Orientation of the flagella toward the cell body is critical for determination of wild‐type spirochete's wave‐like morphology and motility. Here, we provide the first evidence that FlbB is a key determinant of normal orientation of the flagella and collar assembly.  相似文献   

2.
The Lyme disease bacterium Borrelia burgdorferi has 7–11 periplasmic flagella (PF) that arise from the cell poles and extend toward the midcell as a flat-ribbon, which is distinct from other bacteria. FlhF, a signal recognition particle (SRP)-like GTPase, has been found to regulate the flagellar number and polarity; however, its role in B. burgdorferi remains unknown. B. burgdorferi has an FlhF homolog (BB0270). Structural and biochemical analyses show that BB0270 has a similar structure and enzymatic activity as its counterparts from other bacteria. Genetics and cryo-electron tomography studies reveal that deletion of BB0270 leads to mutant cells that have less PF (4 ± 2 PF per cell tip) and fail to form a flat-ribbon, indicative of a role of BB0270 in the control of PF number and configuration. Mechanistically, we demonstrate that BB0270 localizes at the cell poles and controls the number and position of PF via regulating the flagellar protein stability and the polar localization of the MS-ring protein FliF. Our study not only provides the detailed characterizations of BB0270 and its profound impacts on flagellar assembly, morphology and motility in B. burgdorferi, but also unveils mechanistic insights into how spirochetes control their unique flagellar patterns.  相似文献   

3.
FlaG homologue has been found in several bacteria including spirochetes; however, its function is poorly characterised. In this report, we investigated the role of TDE1473, a putative FlaG, in the spirochete Treponema denticola, a keystone pathogen of periodontitis. TDE1473 resides in a large gene operon that is controlled by a σ70‐like promoter and encodes a putative FlaG protein of 123 amino acids. TDE1473 can be detected in the periplasmic flagella (PFs) of Tdenticola, suggesting that it is a flagella‐associated protein. Consistently, in vitro studies demonstrate that the recombinant TDE1473 interacts with the PFs in a dose‐dependent manner and that such an interaction requires FlaA, a flagellar filament sheath protein. Deletion of TDE1473 leads to long and less motile mutant cells. Cryo‐electron tomography analysis reveal that the wild‐type cells have 2–3 PFs with nearly homogenous lengths (ranging from 3 to 6 μm), whereas the mutant cells have less intact PFs with disparate lengths (ranging from 0.1 to 9 μm). The phenotype of Tdenticola TDE1473 mutant reported here is different from its counterparts in other bacteria, which provides insight into further understanding the role of FlaG in the regulation of bacterial cell morphogenesis and flagellation.  相似文献   

4.
Unlike external flagellated bacteria, spirochetes have periplasmic flagella (PF). Very little is known about how PF are assembled within the periplasm of spirochaetal cells. Herein, we report that FliD (BB0149), a flagellar cap protein (also named hook‐associated protein 2), controls flagellin stability and flagellar filament assembly in the Lyme disease spirochete Borrelia burgdorferi. Deletion of fliD leads to non‐motile mutant cells that are unable to assemble flagellar filaments and pentagon‐shaped caps (10 nm in diameter, 12 nm in length). Interestingly, FlaB, a major flagellin protein of B. burgdorferi, is degraded in the fliD mutant but not in other flagella‐deficient mutants (i.e., in the hook, rod, or MS‐ring). Biochemical and genetic studies reveal that HtrA, a serine protease of B. burgdorferi, controls FlaB turnover. Specifically, HtrA degrades unfolded but not polymerized FlaB, and deletion of htrA increases the level of FlaB in the fliD mutant. Collectively, we propose that the flagellar cap protein FliD promotes flagellin polymerization and filament growth in the periplasm. Deletion of fliD abolishes this process, which leads to leakage of unfolded FlaB proteins into the periplasm where they are degraded by HtrA, a protease that prevents accumulation of toxic products in the periplasm.  相似文献   

5.
A new ‘paralyzed’ mutant. OC–10, was isolated in Chlamydomonas reinhardtii Dangeard. OC-10 cannot swim and generally shows very little flagellar movement. However, when OC-10 was demembranated, axonemal motility was reactivated in the presence of adenosine triphosphate (ATP) or adenosine diphosphate (ADP). The beating form of the reactivated axonemes was almost the same as that of the wild-type axonemes. Flagellar regeneration of OC-10 was slower than that of the wild-type. Electron microscopic examination showed no abnormality in OC-10 flagella, but SDS/PAGE revealed that mobility of a flagellar membrane protein was changed and a few bands disappeared in OC-10 flagella, When the mutant was crossed to wild-type to form temporary dikaryon cells with 4 flagella, OC-10 flagella did not regain motility. Tetrad analysis of crosses between OC–10 and wild-type demonstrated a 1:1 segregation on the basis of flagellar motility. From these results, we suppose that OC-10 may be limited in ATP availability inside the flagella, or altered in flagellar membrane proteins important for motility.  相似文献   

6.
The biflagellate somatic cells of Volvox carteri f. nagariensis lyengar exhibit an asymmetric pattern of flagellar development. Initiallt each somatic cell has two short (4 μm) flagella but after several hours one flagellum on each cell elongates unitl it reaches a length of 12 μm. Due to the regular arrangement of somatic cells in the Volvox spheroid it is apparent that the same flagellum on each somatic is the first to elongale. The asymmetric flagellar length is maintained for about 8 h after which the second flagellum on each somatic cell elongates. When the second flagellum attains the same length (12 μm) as the first flagellum, both flagella elongale at the same rate until reaching a final length of 22 μm. Experimental removal of somatic cell flagella results in their regeneration. Somatis cells regenerate both flagella simultaneously and full length flagella are produced in about 2 h. The intial rate of flagellar regeneration is about ten times faster than the intial rate of flagllar growth in development. Cycloheximide, an inhibitor of protein synthesis, has no effect on the initial rate of flagellar regeneration but the flagella produced in the presence of the drug are half the length of flagella produced in its absence. Somatic cells are able to regenerate flagella up to the time of α and β tubulin, the major structural proteins of the flagellar axoneme, and other cellular proteins.  相似文献   

7.
8.
Motility and chemotaxis are essential components of pathogenesis for many infectious bacteria, including Borrelia burgdorferi, the causative agent of Lyme disease. Motility and chemotaxis genes comprise 5 to 6% of the genome of B. burgdorferi, yet the functions of most of those genes remain uncharacterized, mainly due to the paucity of a nonpolar gene inactivation system. In this communication, we describe the development of a novel gene inactivation methodology to target B. burgdorferi fliL, a putative periplasmic flagellar gene located in a large motility operon and transcribed by RNA polymerase containing σ(70). Although the morphology of nonpolar fliL mutant cells was indistinguishable from that of wild-type cells, the mutant exhibited a defective-motility phenotype. Cryo-electron tomography (cryo-ET) of intact organisms revealed that the periplasmic flagella in the fliL mutant were frequently tilted toward the cell pole instead of their normal orientation toward the cell body. These defects were corrected when the mutant was complemented in cis. Moreover, a comparative analysis of flagellar motors from the wild type and the mutant provides the first structural evidence that FliL is localized between the stator and rotor. Our results suggest that FliL is likely involved in coordinating or regulating the orientation of periplasmic flagella in B. burgdorferi.  相似文献   

9.
The flagella of Chlamydomonas reinhardi are required for the initiation of mating between opposite mating type gametes. It has been suggested that flagellar length is a crucial factor in a cell's ability to transmit and receive the sexual signals necessary for fusion. Mating type + (mt+) cells of gam-5, a mutant which is characterized by variable length, paralyzed flagella, were mated with wild-type, mt cells. Activation of the mating structures of the gam-5 gametes, and therefore successful signalling, was demonstrated for cells with flagella as short as 1.5 μm (less than 1/6 normal length). Because this mutant displays aberrant axonemal structures, and because various mutants with other defects in axonemal structure are also able to mate, it seems likely that the flagellar membrane may provide the main conduit for gametic sexual signals.  相似文献   

10.
Citrus huanglongbing (HLB) is the most devastating citrus disease worldwide. ‘Candidatus Liberibacter asiaticus’ (Las) is the most prevalent HLB causal agent that is yet to be cultured. Here, we analysed the flagellar genes of Las and Rhizobiaceae and observed two characteristics unique to the flagellar proteins of Las: (i) a shorter primary structure of the rod capping protein FlgJ than other Rhizobiaceae bacteria and (ii) Las contains only one flagellin-encoding gene flaA (CLIBASIA_02090), whereas other Rhizobiaceae species carry at least three flagellin-encoding genes. Only flgJAtu but not flgJLas restored the swimming motility of Agrobacterium tumefaciens flgJ mutant. Pull-down assays demonstrated that FlgJLas interacts with FlgB but not with FliE. Ectopic expression of flaALas in A. tumefaciens mutants restored the swimming motility of ∆flaA mutant and ∆flaAD mutant, but not that of the null mutant ∆flaABCD. No flagellum was observed for Las in citrus and dodder. The expression of flagellar genes was higher in psyllids than in planta. In addition, western blotting using flagellin-specific antibody indicates that Las expresses flagellin protein in psyllids, but not in planta. The flagellar features of Las in planta suggest that Las movement in the phloem is not mediated by flagella. We also characterized the movement of Las after psyllid transmission into young flush. Our data support a model that Las remains inside young flush after psyllid transmission and before the flush matures. The delayed movement of Las out of young flush after psyllid transmission provides opportunities for targeted treatment of young flush for HLB control.  相似文献   

11.
Background information. Spermatozoa show several changes in flagellar waveform, such as upon fertilization. Ca2+ has been shown to play critical roles in modulating the waveforms of sperm flagella. However, a Ca2+‐binding protein in sperm flagella that regulates axonemal dyneins has not been fully characterized. Results. We identified a novel neuronal calcium sensor family protein, named calaxin (Ca2+‐binding axonemal protein), in sperm flagella of the ascidian Ciona intestinalis. Calaxin has three EF‐hand Ca2+‐binding motifs, and its orthologues are present in metazoan species, but not in yeast, green algae or plant. Immunolocalization revealed that calaxin is localized near the outer arm of the sperm flagellar axonemes. Moreover, it is distributed in adult tissues bearing epithelial cilia. An in vitro binding experiment indicated that calaxin binds to outer arm dynein. A cross‐linking experiment showed that calaxin binds to β‐tubulin in situ. Overlay experiments further indicated that calaxin binds the β‐dynein heavy chain of outer arm dynein in the presence of Ca2+. Conclusions. These results suggest that calaxin is a potential Ca2+‐dependent modulator of outer arm dynein in metazoan cilia and flagella.  相似文献   

12.
Flagellar filament self‐assembles from the component protein, flagellin or FliC, with the aid of the capping protein, HAP2 or FliD. Depending on the helical parameters of filaments, flagella from various species are divided into three groups, family I, II, and III. Each family coincides with the traditional classification of flagella, peritrichous flagella, polar flagella, and lateral flagella, respectively. To elucidate the physico‐chemical properties of flagellin to separate families, we chose family I flagella and family II flagella and examined how well the exchangeability of a combination of FliC and/or FliD from different families is kept in filament formation. FliC or FliD of Salmonella enterica serovar Typhimurium (Salty; family I) were exchanged with those of Escherichia coli (Escco; family I) or Pseudomonas aeruginosa (Pseae; family II). In a Salty fliC deletion mutant, Escco FliC formed short filaments, but Pseae FliC did not form filaments. In a Salty fliD deletion mutant, both Escco FliD and Pseae FliD allowed Salty FliC to polymerize into short filaments. In conclusion, FliC can be exchanged among the same family but not between different families, while FliD serves as the cap protein even in different families, confirming that FliC is essential for determining families, but FliD plays a subsidiary role in filament formation. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
A high-speed microcinematographic study was performed on the biflagellate unicellular alga Dunaliella. A frame-by-frame analysis has shown that the two flagella never beat at the same frequency. For a better characterization of the bending pattern of the two flagella, a new automated method of image analysis has been developed. The method allowed an automatic acquisition of a line characterizing the Dunaliella flagellum and its mathematical modelling. From this model, some binding parameters could be automatically measured, which have permitted determination of the velocities of formation and propagation of flagellar waves and the variation of the curvature radius of the bends between the two flagella. Both flagella showed a similar pattern of ciliary beat. The most important difference was the lengthening of the initiation phase for the slower flagella.  相似文献   

14.
The organization of two types of nontubular mastigonemes associated with the anterior flagellar surface of the phagotrophic biflagellate Peranema trichophorum (Ehrenberg) Stein is described from studies of thin sections, negative-stained and shadow-cast preparations of both intact and isolated, detergent-treated flagella. Long mastigonemes form a unilateral, spiral array of tufts which curve toward the distal end of the flagellum, while two short mastigoneme ribbons form unequal halves of a bilateral array parallel to the flagellar long axis. Each ribbon is composed of individual overlapping fan-shaped tiers of short mastigonemes interlinked by fine fibrils. A model proposed for Peranema mastigonemes is similar to recent models of mastigoneme organization in Euglena.  相似文献   

15.
Eggs of laminaria angustata Kjellman were shown to have two flagella. Compared with flagella of other phaeophycean swarmers, those of Laminaria eggs have several unique characters such as lack of mastigonemes, widely spaced basal bodies and no flagellar rootlets. The flagella abscise during egg liberation.  相似文献   

16.
Flagella are sophisticated organelles found in many eukaryotic microbes where they perform functions related to motility, signal detection, or cell morphogenesis. In many cases, several flagella are present per cell, and these can have a different composition, length, age, or function, raising the question of how this is managed. When the flagella are equivalent and constructed simultaneously such as in Chlamydomonas or Naegleria, we propose an equal access model where molecular components have free access to each organelle. By contrast, Trypanosoma and Leishmania contain temporally distinct organelles and elongate a new flagellum whilst maintaining the existing one. The equal access model could function providing that the mature flagellum is “locked” so that it can no longer be elongated or shortened. Alternatively, access of flagellar components could be restricted at the level of the basal body, the transition zone, or the loading on intraflagellar transport trains. In organisms that contains flagella of different age and composition such as Giardia, a temporal dimension is necessary, with the production of protein components of flagella spreading over one or more cell cycles. In the future, deciphering the molecular mechanisms involved in these processes should reveal new insights in flagellum assembly and function.  相似文献   

17.
The outer membrane (OM) of the pathogenic diderm spirochete, Borrelia burgdorferi, contains integral β‐barrel outer membrane proteins (OMPs) in addition to its numerous outer surface lipoproteins. Very few OMPs have been identified in B. burgdorferi, and the protein machinery required for OMP assembly and OM localization is currently unknown. Essential OM BamA proteins have recently been characterized in Gram‐negative bacteria that are central components of an OM β‐barrel assembly machine and are required for proper localization and insertion of bacterial OMPs. In the present study, we characterized a putative B. burgdorferi BamA orthologue encoded by open reading frame bb0795. Structural model predictions and cellular localization data indicate that the B. burgdorferi BB0795 protein contains an N‐terminal periplasmic domain and a C‐terminal, surface‐exposed β‐barrel domain. Additionally, assays with an IPTG‐regulatable bb0795 mutant revealed that BB0795 is required for B. burgdorferi growth. Furthermore, depletion of BB0795 results in decreased amounts of detectable OMPs in the B. burgdorferi OM. Interestingly, a decrease in the levels of surface‐exposed lipoproteins was also observed in the mutant OMs. Collectively, our structural, cellular localization and functional data are consistent with the characteristics of other BamA proteins, indicating that BB0795 is a B. burgdorferi BamA orthologue.  相似文献   

18.
Pantoea ananatis is a widespread phytopathogen with a broad host range. Despite its ability to infect economically important crops, such as maize, rice and onion, relatively little is known about how this bacterium infects and colonizes host tissue or spreads within and between hosts. To study the role of motility in pathogenicity, we analysed both swimming and twitching motility in P. ananatis LMG 20103. Genetic recombineering was used to construct four mutants affected in motility. Two flagellar mutants were disrupted in the flgK and motA genes, required for flagellar assembly and flagellar rotation, respectively. Similarly, two twitching motility mutants were generated, impaired in the structure (pilA) and functioning (pilT) of the type IV pili. The role of swimming and twitching motility during the infection cycle of P. ananatis in onion seedlings was determined by comparing the mutant‐ and wild‐type strains using several in vitro and in planta assays. From the results obtained, it was evident that flagella aid P. ananatis in locating and attaching to onion leaf surfaces, as well as in pathogenicity, whereas twitching motility is instrumental in the spread of the bacteria on the surface once attachment has occurred. Both swimming and twitching motility contribute towards the ability of P. ananatis to cause disease in onions.  相似文献   

19.
Electron microscopy was used to examine the flagellar apparatus of Herpetomonas ampelophilae from the gut and malpighian tubules of Drosophila melanogaster. The flagellates attach to the microvilli either by weaving their flagella between the microvilli or by engulfing several microvilli with an external flagellar membrane. The first type predominated in the gut while the second type was limited to the malpighian tubules. Desmosomes were not involved in either type of attachment. A subpellicular collar with emerging microtubules was found to be adjacent to the desmosome of the flagellar pocket of herpetomonads in the gut.  相似文献   

20.
Pathogenic Leptospira strains are responsible for leptospirosis, a worldwide emerging zoonotic disease. These spirochetes are unique amongst bacteria because of their corkscrew-like cell morphology and their periplasmic flagella. Motility is reported as an important virulence determinant, probably favoring entry and dissemination of pathogenic Leptospira in the host. However, proteins constituting the periplasmic flagella and their role in cell shape, motility and virulence remain poorly described. In this study, we characterized a spontaneous L. interrogans mutant strain lacking motility, correlated with the loss of the characteristic hook-shaped ends, and virulence in the animal model. Whole genome sequencing allowed the identification of one nucleotide deletion in the fliM gene resulting in a premature stop codon, thereby preventing the production of flagellar motor switch protein FliM. Genetic complementation restored cell morphology, motility and virulence comparable to those of wild type cells. Analyses of purified periplasmic flagella revealed a defect in flagella assembly, resulting in shortened flagella compared to the wild type strain. This also correlated with a lower amount of major filament proteins FlaA and FlaB. Altogether, these findings demonstrate that FliM is required for full and correct assembly of the flagella which is essential for motility and virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号