首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Peptidoglycan (PG), the mighty miniwall, is the main structural component of practically all bacterial cell envelopes and has been the subject of a wealth of research over the past 60 years, if only because its biosynthesis is the target of many antibiotics that have successfully been used in the treatment of bacterial infections. This review is mainly focused on the most recent achievements in research on the modification of PG glycan strands, which contribute to the resistance of bacteria to the host immune response to infection and to their own lytic enzymes, and on studies on the spatial organization of the macromolecule.  相似文献   

2.
An intracellular second messenger unique to bacteria, c-di-GMP, has gained appreciation as a key player in adaptation and virulence strategies, such as biofilm formation, persistence, and cytotoxicity. Diguanylate cyclases containing GGDEF domains and phosphodiesterases containing either EAL or HD-GYP domains have been identified as the enzymes controlling intracellular c-di-GMP levels, yet little is known regarding signal transmission and the sensory targets for this signaling molecule. Although limited in number, identified c-di-GMP receptors in bacteria are characterized by prominent diversity and multilevel impact. In addition, c-di-GMP has been shown to have immunomodulatory effects in mammals and several eukaryotic c-di-GMP sensors have been proposed. The structural biology of c-di-GMP receptors is a rapidly developing field of research, which holds promise for the development of novel therapeutics against bacterial infections. In this review, we highlight recent advances in identifying bacterial and eukaryotic c-di-GMP signaling mechanisms and emphasize the need for mechanistic structure-function studies on confirmed signaling targets.  相似文献   

3.
Ogawa M  Sasakawa C 《Autophagy》2006,2(3):171-174
Bacterial invasion of eukaryotic cells, and host recognition and elimination of the invading bacteria, determines the fate of bacterial infection. Once inside mammalian cells, many pathogenic bacteria enter the host cytosol to escape from the lytic compartment and gain a replicative niche. Recent studies indicate that autophagy also recognizes intracellular bacteria. Although autophagy is a conserved membrane trafficking pathway in eukaryotic cells that sequesters undesirable or recyclable cytoplasmic components or organelles and delivers them to lysosomes, autophagy has recently been described as playing a pivotal role as an intracellular surveillance system for recognition and eradication of the pathogens that have invaded the cytoplasm. Indeed, unless they are able to circumvent entrapping by autophagosomes, bacteria ultimately undergo degradation by delivery into autolysosomes. In this review we discuss recent discoveries regarding Shigella strategies for infecting mammalian cells, and then focus on recent studies of an elegant bacterial survival strategy against autophagic degradation.  相似文献   

4.
Bacterial Cell Wall Synthesis: New Insights from Localization Studies   总被引:19,自引:1,他引:18       下载免费PDF全文
In order to maintain shape and withstand intracellular pressure, most bacteria are surrounded by a cell wall that consists mainly of the cross-linked polymer peptidoglycan (PG). The importance of PG for the maintenance of bacterial cell shape is underscored by the fact that, for various bacteria, several mutations affecting PG synthesis are associated with cell shape defects. In recent years, the application of fluorescence microscopy to the field of PG synthesis has led to an enormous increase in data on the relationship between cell wall synthesis and bacterial cell shape. First, a novel staining method enabled the visualization of PG precursor incorporation in live cells. Second, penicillin-binding proteins (PBPs), which mediate the final stages of PG synthesis, have been localized in various model organisms by means of immunofluorescence microscopy or green fluorescent protein fusions. In this review, we integrate the knowledge on the last stages of PG synthesis obtained in previous studies with the new data available on localization of PG synthesis and PBPs, in both rod-shaped and coccoid cells. We discuss a model in which, at least for a subset of PBPs, the presence of substrate is a major factor in determining PBP localization.  相似文献   

5.
In order to maintain shape and withstand intracellular pressure, most bacteria are surrounded by a cell wall that consists mainly of the cross-linked polymer peptidoglycan (PG). The importance of PG for the maintenance of bacterial cell shape is underscored by the fact that, for various bacteria, several mutations affecting PG synthesis are associated with cell shape defects. In recent years, the application of fluorescence microscopy to the field of PG synthesis has led to an enormous increase in data on the relationship between cell wall synthesis and bacterial cell shape. First, a novel staining method enabled the visualization of PG precursor incorporation in live cells. Second, penicillin-binding proteins (PBPs), which mediate the final stages of PG synthesis, have been localized in various model organisms by means of immunofluorescence microscopy or green fluorescent protein fusions. In this review, we integrate the knowledge on the last stages of PG synthesis obtained in previous studies with the new data available on localization of PG synthesis and PBPs, in both rod-shaped and coccoid cells. We discuss a model in which, at least for a subset of PBPs, the presence of substrate is a major factor in determining PBP localization.  相似文献   

6.
曹雪峰  彭练慈  方仁东 《微生物学报》2023,63(12):4482-4501
溶血磷脂(lysophospholipids, LPLs)是细胞膜中的一类脂质代谢中间产物,主要由磷脂分子被水解后生成。LPL的生物学功能与其前体磷脂有明显的区别。在真核细胞中,LPL是一种参与多种胞内生物信号调控的重要活性分子,但在细菌中,LPL的生物学功能还未被充分揭示。LPL通常是细菌细胞膜中的次要组分,在环境压力条件下其含量可显著升高。除了参与细胞膜磷脂代谢,LPL被认为在细菌环境适应性及致病性中发挥重要作用。其在细胞膜中的累积可以显著提高细菌在环境压力下的存活及增殖效率,同时还是细菌感染过程中重要的信号分子。近期有研究表明,LPL可能是细菌新发现的潜在毒力因子。本文因此将结合最新研究数据,对不同种类LPL的从头合成通路以及LPL在细菌抵御环境压力和细菌-宿主互作等方面所发挥的生物学功能进行综述,为对细菌致病机制和防治细菌感染的相关研究提供新的思路和参考借鉴。  相似文献   

7.
Most bacterial pathogens enter and exit eukaryotic cells during their journey through the vertebrate host. In order to endure inside a eukaryotic cell, bacterial invaders commonly employ bacterial secretion systems to inject host cells with virulence factors that co‐opt the host's membrane trafficking systems and thereby establish specialised pathogen‐containing vacuoles (PVs) as intracellular niches permissive for microbial growth and survival. To defend against these microbial adversaries hiding inside PVs, host organisms including humans evolved an elaborate cell‐intrinsic armoury of antimicrobial weapons that include noxious gases, antimicrobial peptides, degradative enzymes, and pore‐forming proteins. This impressive defence machinery needs to be accurately delivered to PVs, in order to fight off vacuole‐dwelling pathogens. Here, I discuss recent evidence that the presence of bacterial secretion systems at PVs and the associated destabilisation of PV membranes attract such antimicrobial delivery systems consisting of sugar‐binding galectins as well as dynamin‐like guanylate‐binding proteins (GBPs). I will review recent advances in our understanding of intracellular immune recognition of PVs by galectins and GBPs, discuss how galectins and GBPs control host defence, and highlight important avenues of future research in this exciting area of cell‐autonomous immunity.  相似文献   

8.
非编码RNA(non-coding RNAs,ncRNAs)在细胞增殖、发育、分化、代谢、信号转导以及免疫调控中发挥重要调节作用。越来越多的研究证明,ncRNA在胞内病原菌的致病性和免疫逃逸中发挥重要调控作用。一方面ncRNA是细菌代谢、群体感应和毒力因子表达的调控因子,与胞内病原菌的致病性密切相关;另一方面ncRNA在调节宿主抗胞内病原菌免疫应答中发挥重要作用,深入研究ncRNA如何调节宿主免疫应答将有助于胞内菌免疫逃逸机制的研究。就非编码RNA在胞内病原菌免疫逃逸和致病中的作用作一综述。  相似文献   

9.
Autophagy, an intracellular degradation process highly conserved from yeast to humans, is viewed as an important defence mechanism to clear intracellular bacteria. However, recent work has shown that autophagy may have different roles during different bacterial infections that restrict bacterial replication (antibacterial autophagy), act in cell autonomous signalling (non‐bacterial autophagy) or support bacterial replication (pro‐bacterial autophagy). This review will focus on newfound interactions of autophagy and pathogenic bacteria, highlighting that, in addition to delivering bacteria to the lysosome, autophagy responding to bacterial invasion may have a much broader role in mediating disease outcome.  相似文献   

10.
The human immune system can directly lyse invading micro‐organisms and aberrant host cells by generating pores in the cell envelope, called membrane attack complexes (MACs). Recent studies using single‐particle cryoelectron microscopy have revealed that the MAC is an asymmetric, flexible pore and have provided a structural basis on how the MAC ruptures single lipid membranes. Despite these insights, it remains unclear how the MAC ruptures the composite cell envelope of Gram‐negative bacteria. Recent functional studies on Gram‐negative bacteria elucidate that local assembly of MAC pores by surface‐bound C5 convertase enzymes is essential to stably insert these pores into the bacterial outer membrane (OM). These convertase‐generated MAC pores can subsequently efficiently damage the bacterial inner membrane (IM), which is essential for bacterial killing. This review summarizes these recent insights of MAC assembly and discusses how MAC pores kill Gram‐negative bacteria. Furthermore, this review elaborates on how MAC‐dependent OM damage could lead to IM destabilization, which is currently not well understood. A better understanding on how MAC pores kill bacteria could facilitate the future development of novel strategies to treat infections with Gram‐negative bacteria.  相似文献   

11.
Bacteria remodel peptidoglycan structure in response to environmental changes. Many enzymes are involved in peptidoglycan metabolism; however, little is known about their responsiveness in a defined environment or the modes they assist bacteria to adapt to new niches. Here, we focused in peptidoglycan enzymes that intracellular bacterial pathogens use inside eukaryotic cells. We identified a peptidoglycan enzyme induced by Salmonella enterica serovar Typhimurium in fibroblasts and epithelial cells. This enzyme, which shows γ‐D‐glutamyl‐meso‐diaminopimelic acid D,L‐endopeptidase activity, is also produced by the pathogen in media with limited nutrients and in resting conditions. The enzyme, termed EcgA for e ndopeptidase responding to c essation of g rowth’, is encoded in a S. Typhimurium genomic island absent in Escherichia coli. EcgA production is strictly dependent on the virulence regulator PhoP in extra‐ and intracellular environments. Consistent to this regulation, a mutant lacking EcgA is attenuated in the mouse typhoid model. These findings suggest that specialised peptidoglycan enzymes, such as EcgA, might facilitate Salmonella adaptation to the intracellular lifestyle. Moreover, they indicate that readjustment of peptidoglycan metabolism inside the eukaryotic cell is essential for host colonisation.  相似文献   

12.
The cytoskeleton of eukaryotic cells is affected by a number of bacterial and viral pathogens. In this review we consider three recurring themes of cytoskeletal involvement in bacterial pathogenesis: 1) the effect of bacterial toxins on actin-regulating small GTP-binding proteins; 2) the invasion of non-phagocytic cells by the bacterial induction of ruffles at the plasma membrane; 3) the formation of actin tails and pedestals by intracellular and extracellular bacteria, respectively. Considerable progress has been made recently in the characterization of these processes. It is becoming clear that bacterial pathogens have developed a variety of sophisticated mechanisms for utilizing the complex cytoskeletal system of host cells. These bacterially-induced processes are now providing unique insights into the regulation of fundamental eukaryotic mechanisms.  相似文献   

13.
A high-throughput system to rapidly assess the intracellular replication of Staphylococcus aureus has been developed utilizing S. aureus transformed with a dual gfp-luxABCDE reporter operon under the control of a growth-dependent promoter. Replication of tagged bacteria internalized into bovine mammary epithelial cells (MAC-T) could be measured by monitoring fluorescence and bioluminescence from the reporter operon following removal of extracellular bacteria from the plates. Bacterial replication inside cells was confirmed by a novel ex vivo time-lapse confocal microscopic method. This assay of bacterial replication was used to evaluate the efficacy of antibiotics which are commonly used to treat staphylococcal infections. Not all antibiotics tested were able to prevent intracellular replication of S. aureus and some were ineffective at preventing replication of intracellular bacteria at concentrations above the MIC determined for bacteria in broth culture. Comparison of the fluorescence and bioluminescence signals from the bacteria enabled effects on protein synthesis and metabolism to be discriminated and gave information on the entry of compounds into the eukaryotic cell, even if bacterial replication was not prevented. Elevated resistance of S. aureus to antibiotics inside host cells increases the likelihood of selecting S. aureus strains which are resistant to commonly used antimicrobial agents within the intracellular niche. The approach presented directly assesses intracellular efficacy of antibiotics and provides an evidence-based approach to antibiotic selection for prescribing physicians and medical microbiologists.  相似文献   

14.
The discovery that the bacterial cell shape determinant MreB is related to actin spurred new insights into bacterial morphogenesis and development. The trafficking and mechanical roles of the eukaryotic cytoskeleton were hypothesized to have a functional ancestor in MreB based on evidence implicating MreB as an organizer of cell wall synthesis. Genetic, biochemical and cytological studies implicate MreB as a coordinator of a large multi-protein peptidoglycan (PG) synthesizing holoenzyme. Recent advances in microscopy and new biochemical evidence, however, suggest that MreB may function differently than previously envisioned. This review summarizes our evolving knowledge of MreB and attempts to refine the generalized model of the proteins organizing PG synthesis in bacteria. This is generally thought to be conserved among eubacteria and the majority of the discussion will focus on studies from a few well-studied model organisms.  相似文献   

15.
The host type I interferon response to viral and bacterial infections   总被引:10,自引:0,他引:10  
Perry AK  Chen G  Zheng D  Tang H  Cheng G 《Cell research》2005,15(6):407-422
Type I interferons (IFN) are well studied cytokines with anti-viral and immune-modulating functions. Type I IFNs are produced following viral infections, but until recently, the mechanisms of viral recognition leading to IFN production were largely unknown. Toll like receptors (TLRs) have emerged as key transducers of type I IFN during viral infections by recognizing various viral components. Furthermore, much progress has been made in defining the signaling pathways downstream of TLRs for type I IFN production. TLR7 and TLR9 have become apparent as universally important in inducing type I IFN during infection with most viruses, particularly by plasmacytoid dendritic cells. New intracellular viral pattern recognition receptors leading to type I IFN production have been identified. Many bacteria can also induce the up-regulation of these cytokines. Interestingly, recent studies have found a detrimental effect on host cells if type Ⅰ IFN is produced during infection with the intracellular gram-positive bacterial pathogen, Listeria monocytogenes. This review will discuss the recent advances made in defining the signaling pathways leading to type I IFN production.  相似文献   

16.
17.
Helicases are specialized molecular motors that separate duplex nucleic acids into single strands. The RecQ family of helicases functions at the interface of DNA replication, recombination and repair in bacterial and eukaryotic cells. They are key, multifunctional enzymes that have been linked to three human diseases: Bloom's, Werner's and Rothmund–Thomson's syndromes. This review summarizes recent studies that relate the structures of RecQ proteins to their biochemical activities.  相似文献   

18.
细胞核是细胞遗传与代谢的控制中心,调控细胞对外界的响应、代谢、生长和分化等细胞活动。在细菌感染宿主细胞过程中,个别细菌来源的效应蛋白能够靶向进入宿主细胞核,影响细胞核内基因的转录、RNA剪切、DNA修复以及染色质重组等生命活动,将这些能够进入细胞核的细菌效应蛋白称之为核调节蛋白。对病原菌分泌的核调节蛋白进入宿主细胞核的方式,以及不同病原菌的核调节蛋白调控宿主细胞的生命过程进行归纳总结,从而为深入探究病原细菌感染宿主细胞的致病机理提供理论基础。  相似文献   

19.
Peptidoglycan in obligate intracellular bacteria   总被引:1,自引:0,他引:1       下载免费PDF全文
Peptidoglycan is the predominant stress‐bearing structure in the cell envelope of most bacteria, and also a potent stimulator of the eukaryotic immune system. Obligate intracellular bacteria replicate exclusively within the interior of living cells, an osmotically protected niche. Under these conditions peptidoglycan is not necessarily needed to maintain the integrity of the bacterial cell. Moreover, the presence of peptidoglycan puts bacteria at risk of detection and destruction by host peptidoglycan recognition factors and downstream effectors. This has resulted in a selective pressure and opportunity to reduce the levels of peptidoglycan. In this review we have analysed the occurrence of genes involved in peptidoglycan metabolism across the major obligate intracellular bacterial species. From this comparative analysis, we have identified a group of predicted ‘peptidoglycan‐intermediate’ organisms that includes the Chlamydiae, Orientia tsutsugamushi, Wolbachia and Anaplasma marginale. This grouping is likely to reflect biological differences in their infection cycle compared with peptidoglycan‐negative obligate intracellular bacteria such as Ehrlichia and Anaplasma phagocytophilum, as well as obligate intracellular bacteria with classical peptidoglycan such as Coxiella, Buchnera and members of the Rickettsia genus. The signature gene set of the peptidoglycan‐intermediate group reveals insights into minimal enzymatic requirements for building a peptidoglycan‐like sacculus and/or division septum.  相似文献   

20.
The gentamicin survival assay, a method routinely used to estimate bacterial infection of eukaryotic host cells, depends on the presumed limited penetration of gentamicin across the eukaryotic cell membrane. However, some studies have suggested that gentamicin may in fact enter eukaryotic cells and kill intracellular bacteria. In this study we devised alternative methods to enumerate intracellular Salmonellae using a lytic bacteriophage, SP6, and an amino acid auxotroph, Pro- mutant, which replicates selectively within host cells in the presence of its uptake inhibitor, 3,4-dehydro-L-proline. The conventional gentamicin survival assay was systematically compared with the alternative methods for the enumeration of intracellular Salmonellae. We found that gentamicin decreases the survival of intracellular Salmonellae when added to extracellular media at concentrations above 20 microg/ml. The alternative methods do not suffer from this disadvantage, suggesting that they should be used to replace the gentamicin survival assay. In addition, the proline auxotroph method could be applied to detect bacterial release from host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号