共查询到20条相似文献,搜索用时 15 毫秒
1.
Allan Raffard Frédéric Santoul Simon Blanchet Julien Cucherousset 《Freshwater Biology》2020,65(8):1401-1411
- Intraspecific trophic variability has important ecological and evolutionary implications, and is driven by multiple interacting factors. Functional traits and environmental conditions are important in mediating the trophic niche of individuals because they determine their ability to consume certain prey, their energetic requirements, and resource availability. In this study, we aimed at investigating the interacting effects of functional traits and environmental conditions on several attributes of trophic niche in natural populations.
- Here, we quantified intraspecific variability in the trophic niche of 12 riverine populations of European minnow (Phoxinus phoxinus) using stable isotope analyses. Functional traits (i.e. morpho-anatomical traits) and environmental conditions (i.e. upstream–downstream gradient, forest cover) were quantified to identify the determinants of (1) trophic position and resource origin, (2) trophic niche size, and (3) trophic differentiation (β-diversity) among populations.
- We demonstrated that trophic position and resource origin covaried with functional traits related to body size and locomotion performance, and that the strength and shape of these relationships varied according to local environmental conditions. The trophic niche size also differed among populations, although no determinant was identified. Finally, trophic β-diversity was correlated to environmental differentiation among sites.
- Overall, the determinants of intraspecific variability in trophic niche appeared highly context-dependent, and related to the interactions between functional traits and environmental conditions. Because populations are currently facing important environmental changes, understanding this context-dependency is important for predicting food web structure and ecosystem dynamics in a changing world.
2.
Niche segregation among Lake Malawi cichlid fishes? Evidence from stable isotope signatures 总被引:3,自引:0,他引:3
The fish communities of the rocky littoral zone of Lake Malawi contain a large number of ecologically similar cichlid species. It has been suggested that dietary niche segregation may play a role in the coexistence of these species, but previous studies have yielded ambiguous results. Stable isotope analysis was used to determine whether five sympatric species are segregated by diet. Significant differences were found between the mean isotopic signatures of the study species, but there was considerable interspecific overlap between three species from the same subgenus that were anatomically almost indistinguishable. The implication that this was due to substantial dietary similarity was supported by stomach content analysis. We propose that ecological segregation may not always be necessary to allow coexistence of Lake Malawi cichlids. 相似文献
3.
树皮是木本植物茎干最外层结构,具有保护茎干、养分储存与运输等重要作用。因此,树皮厚度是一项非常重要的功能性状,其变异不仅影响树皮的各种生态功能,还能影响群落构建与物种共存。然而,以往对树皮厚度的研究集中于火灾易发生态系统,对火灾不易发生的亚热带常绿阔叶林的研究仍较缺乏。测量了古田山国家级自然保护区亚热带常绿阔叶林内树种的树皮厚度,并检验了总树皮厚度、内树皮厚度与外树皮厚度在各分类群间以及功能群间的差异。结果发现:1)39个树种807个个体的总树皮厚度、内树皮厚度与外树皮厚度均值分别为1.90 mm、1.38 mm和0.54 mm。漆树科(Anacardiaceae)、杨梅科(Myricaceae)以及亚热带常绿阔叶林代表类群壳斗科(Fagaceae)、山茶科(Theaceae)的树皮厚度较大。短柄枹(Quercus serrata)、木荷(Schima superba)、小叶青冈(Cyclobalanopsis myrsinifolia)等树种的树皮厚度较大。2)种间、科间的各树皮厚度差异均显著。不同功能类群间,乔木类群的各树皮厚度均较灌木类群大,常绿类群的各树皮厚度均较落叶类群大(内树皮厚度除外)。本次研究结果表明,相对于火灾易发生态系统中的树皮厚度,古田山亚热带常绿阔叶林群落内的树皮厚度相对较薄,表明这些森林树种对当地湿润气候的适应性。同时,树皮厚度在各种分类水平与功能群水平间的显著变异,反映了群落内不同生态策略的共存。 相似文献
4.
Tropical dry forests are characterized by punctuated seasonal precipitation patterns that drive primary production and the availability of fruits, seeds, flowers, and insects throughout the year. In environments in which the quantity and quality of food resources varies seasonally, consumers should adjust their foraging behavior to maximize energy intake while minimizing overlap with competitors during periods of low food availability. Here, we investigated how the diets of frugivorous bats in tropical dry forests of NW Mexico varied in response to seasonal availability and how this affected dietary overlap of morphologically similar species. We performed stable isotope analyses to understand temporal and interspecific patterns of overall isotopic niche breadth, trophic position, and niche overlap in the diet of six frugivorous species of closely related New World leaf-nosed bats (family Phyllostomidae, subfamily Stenodermatinae). We estimated seasonal changes in resource abundance in two complementary ways: (a) vegetative phenology based on long-term remote sensing data and (b) observational data on food availability from previously published insect and plant fruiting surveys. In all species, there was a consistent pattern of reduced isotopic niche breadth during periods of low food availability. However, patterns of niche overlap varied between morphologically similar species. Overall, results from our study and others suggest that seasonal food availability likely determines overall dietary niche breadth in Phyllostomidae and that despite morphological specialization, it is likely that other mechanisms, such as opportunistic foraging and spatiotemporal niche segregation, may play a role in maintaining coexistence rather than simply dietary displacement. 相似文献
5.
Patrick Ndayambaje Lili Wei Tingfeng Zhang Yuhong Li Lin Liu Xu Huang Chaoxiang Liu 《Ecology and evolution》2021,11(9):3871
- Saltmarsh‐mangrove ecotones occur at the boundary of the natural geographic distribution of mangroves and salt marshes. Climate warming and species invasion can also drive the formation of saltmarsh‐mangrove mixing communities. How these coastal species live together in a “new” mixed community is important in predicting the dynamic of saltmarsh‐mangrove ecosystems as affected by ongoing climate change or human activities. To date, the understanding of species interactions has been rare on adult species in these ecotones.
- Two typical coastal wetlands were selected as cases to understand how mangrove and saltmarsh species living together in the ecotones. The leaves of seven species were sampled from these coastal wetlands based on their distribution patterns (living alone or coexisting) in the high tidal zone, and seven commonly used functional traits of these species were analyzed.
- We found niche separation between saltmarsh and mangrove species, which is probably due to the different adaptive strategies they adopted to deal with intertidal environments.
- Weak interactions between coexisting species were dominated in the high tidal zone of the two saltmarsh‐mangrove communities, which could be driven by both niche differentiation and neutral theory.
- Synthesis. Our field study implies a potential opportunity to establish a multispecies community in the high tidal zone of saltmarsh‐mangrove ecotones, where the sediment was characterized by low salinity and high nitrogen.
6.
《Ecohydrology》2018,11(7)
Water source separation can be one of strategies for different plant species to coexist in a community. This study first demonstrates mechanisms of water source separation during vegetation succession. An isotope‐incorporated mechanistic model was employed to simulate the xylem water isotopic composition and the root water uptake profile for a Pinus densiflora–Quercus myrsinaefolia mixed stand undergoing secondary succession and a pure P. densiflora stand before succession. In the mixed stand, the model successfully simulated the xylem water isotopic composition on the assumption that the root surface resistance per unit length of root (rrs*) decreases with increasing depth for P. densiflora but is constant for Q. myrsinaefolia. Uptake fraction for P. densiflora was greater in deeper zones but in shallower for Q. myrsinaefolia. In contrast, in the pure stand, a constant rrs* for P. densiflora gave good reproducibility in isotope simulation and shallow water uptake dominated. These findings highlight root functional change as a mechanism of water source separation; pre‐existing P. densiflora trees decrease their deep‐root rrs* to compensate for an increase in shallow‐root rrs*. This mechanism was caused by competition against invading Q. myrsinaefolia trees. 相似文献
7.
Changes in feeding niche widths of perch and roach following biomanipulation, revealed by stable isotope analysis 总被引:1,自引:0,他引:1
1. We made an empirical test of a recent proposal that feeding niche widths might be determined as variance of stable isotope values. We determined δ 13 C and δ 15 N values of perch ( Perca fluviatilis ), roach ( Rutilus rutilus ) and their prey from a biomanipulated lake, when the mass removal of fish led to reduced inter- and intra-specific competition and increases in zooplankton abundance and body size.
2. After the first fish removals, both perch and roach mean δ13 C values decreased and mean δ 15 N values increased, indicating a greater diet contribution from pelagic sources.
3. Variances of both δ13 C and δ 15 N values first increased in both fish populations, indicating a wider food spectrum and expanded feeding niche width following reduced fish abundances. Observed changes were greater for the perch population than for roach.
4. In 2006, the perch population abruptly changed its diet so that most individuals were primarily consuming the abundant young-of-the-year fish, and this was reflected in significantly reduced variances of both δ13 C and δ 15 N values.
5. We conclude that isotopic variance can indeed reflect changes in feeding niche width and offers a promising way to study such general ecological concepts. 相似文献
2. After the first fish removals, both perch and roach mean δ
3. Variances of both δ
4. In 2006, the perch population abruptly changed its diet so that most individuals were primarily consuming the abundant young-of-the-year fish, and this was reflected in significantly reduced variances of both δ
5. We conclude that isotopic variance can indeed reflect changes in feeding niche width and offers a promising way to study such general ecological concepts. 相似文献
8.
Sam Rossman Peggy H. Ostrom Forrest Gordon Elise F. Zipkin 《Ecology and evolution》2016,6(8):2405-2413
Isotopic niche has typically been characterized through carbon and nitrogen ratios and most modeling approaches are limited to two dimensions. Yet, other stable isotopes can provide additional power to resolve questions associated with foraging, migration, dispersal and variations in resource use. The ellipse niche model was recently generalized to n‐dimensions. We present an analogous methodology which incorporates variation across three stable dimensions to estimate the significant features of a population's isotopic niche space including: 1) niche volume (referred to as standard ellipsoid volume, SEV), 2) relative centroid location (CL), 3) shape and 4) area of overlap between multiple ellipsoids and 5) distance between two CLs. We conducted a simulation study showing the accuracy and precision of three dimensional niche models across a range of values. Importantly, the model correctly identifies differences in SEV and CL among populations, even with small sample sizes and in cases where the absolute values cannot precisely be recovered. We use these results to provide guidelines for sample size in conducting multivariate isotopic niche modeling. We demonstrate the utility of our approach with a case study of three bottlenose dolphin populations which appear to possess largely overlapping niches when analyzed with only carbon and nitrogen isotopes. Upon inclusion of sulfur, we see that the three dolphin ecotypes are in fact segregated on the basis of salinity and find the stable isotope niche of inshore bottlenose dolphins significantly larger than coastal and offshore populations. 相似文献
9.
- Individual specialisation could affect several ecological and evolutionary processes. Assessing isotopic data from different tissues of a single individual (multi‐tissue approach) represents a common method to estimate individual trophic specialisation (ITS). However, a neglected problem with this approach is that isotopic values of two tissues from a single individual are not statistically independent, and hence, an underestimation of the within‐individual component of variance should be theoretically expected. In this study, we evaluate this potential problem by comparing ITS estimations as currently calculated (uncorrected ITS) against ITS estimations based on a new method that considers the non‐independence problem (corrected ITS).
- We used unpublished δ15N and δ13C data for nine fish species, together with previously published δ15N and δ13C data for eight other vertebrate species, to estimate (and compare) components of variance and ITS values, using uncorrected and corrected isotopic data. In addition, for each species, we used a Monte Carlo resampling routine to test the null hypothesis that all individuals sample equally from the population diet distribution.
- We found that the use of uncorrected δ15N values provided an average ITS estimation which is, depending on the overlap among tissues turnover rates, 14%–35% (fish dataset) and 17%–40% (all species dataset) lower than estimations based on corrected values. Similarly, the use of uncorrected δ13C values provided an average ITS estimation which is 12%–29% (fish dataset) and 21%–45% (all species dataset) lower than corrected estimations. The implications of these results in an ecological context are of great significance. For instance, the fish dataset showed that while uncorrected estimations indicate that three (δ13C) or four (δ15N) species are trophic specialists at the individual level, a moderate correction in isotopic values indicate that none (δ13C) or only one (δ15N) species is a trophic specialist at that level. Noticeably, this last result is much more congruent with dietary data obtained from stomach content analysis.
- Given the several pros of the multi‐tissue approach, such as its reduced operative costs, we suggest not to abandon this method, but to cope with the non‐independence problem by using the correction proposed here or, at least, by selecting body tissues with a minimal overlap in their turnover rates.
10.
1. Variation among individuals within size or age classes can have profound effects on community dynamics and food‐web structure. We investigated the potential influence of habitat disturbance on intrapopulation niche variation. 2. Amphibians occupy a range of lentic habitats from short‐hydroperiod intermittent ponds to long‐hydroperiod permanent ponds. We quantified ontogenetic diet variation and individual specialisation in wood frog tadpoles (Lithobates sylvaticus) and blue‐spotted salamander larvae (Ambystoma laterale) to investigate the influence of hydroperiod on population niche width across a natural hydroperiod gradient using stable isotope and gut content analyses. In one of the few tests using larval forms, we tested the niche variation hypothesis, which predicts that populations with larger niche widths also have increased individual variation. 3. Our results support the niche variation hypothesis, indicating that more generalised populations exhibit higher within‐individual diet variation. We report gradual changes in the relative importance of diet items, decreased dietary overlap and increased trophic position in L. sylvaticus throughout development. A. laterale became more enriched in δ13C and increased in δ15N throughout its larval period. We did not find a relationship between hydroperiod and niche parameters, indicating that niches are conserved across heterogeneous habitats. In contrast to most documented cases, we estimated low levels of individual specialisation in amphibian larvae. 4. Amphibians are an important link between aquatic and terrestrial ecosystems, whereby diet shifts can influence food‐web structure by altering energy flow pathways and the trophic position of higher consumers, ultimately changing food‐chain length. 相似文献
11.
Influence of Tree Species on Forest Nitrogen Retention in the Catskill Mountains, New York, USA 总被引:6,自引:0,他引:6
Pamela H. Templer Gary M. Lovett Kathleen C. Weathers Stuart E. Findlay Todd E. Dawson 《Ecosystems》2005,8(1):1-16
This study examines the effect of four tree species on nitrogen (N) retention within forested catchments of the Catskill Mountains, New York (NY). We conducted a 300-day 15N field tracer experiment to determine how N moves through soil, microbial, and plant pools under different tree species and fertilization regimes. Samples were collected from single-species plots of American beech (Fagus grandifolia Ehrh.), eastern hemlock (Tsuga canadensis L.), red oak (Quercus rubra L.), and sugar maple (Acer saccharum Marsh). Using paired plots we compared the effects of ambient levels of N inputs (11 kg N/ha/y) to additions of 50 kg N/ha/y that began 1.5 years prior to and continued throughout this experiment. Total plot 15N recovery (litter layer, organic and mineral soil to 12 cm, fine roots, and aboveground biomass) did not vary significantly among tree species, but the distribution of sinks for 15N within the forest ecosystem did vary. Recovery in the forest floor was significantly lower in sugar maple stands compared to the other species. 15Nitrogen recovery was 22% lower in the fertilized plots compared to the ambient plots and red oak stands had the largest drop in 15N recovery as a result of N fertilization. Aboveground biomass became a significantly greater 15N sink with fertilization, although it retained less than 1% of the tracer addition. These results indicate that different forest types vary in the amount of N retention in the forest floor, and that forest N retention may change depending upon N inputs. 相似文献
12.
Ravindra Dwivedi Christopher Eastoe John F. Knowles William E. Wright Lejon Hamann Rebecca Minor Bhaskar Mitra Tom Meixner Jennifer McIntosh Paul A. Ty Ferre Christopher Castro Gou‐Yue Niu Greg A. Barron‐Gafford Nate Abramson Shirley A. Papuga Michael Stanley Jia Hu Jon Chorover 《Ecohydrology》2020,13(1)
This study coupled long‐term hydrometric and stable water isotope data to identify links between subsurface water storage and vegetation in a subhumid mountain catchment in Arizona, USA. Specific observations included catchment‐scale hydrologic fluxes and soil water storage and stable water isotopes from stream water, soil water, groundwater, and sap water from Arizona pine (Pinus arizonica) and Douglas fir (Pseudotsuga menziesii) individuals. Here, we find that tightly bound soil water was sufficient to meet dry period vegetation water demand when the former was defined in terms of field capacity as opposed to a matric tension threshold. This water was a mixture of summer and winter precipitation that predominates in both shallow and deep soil waters, and contributed significantly to streamflow. We also identified a less common mobile water type that did not contribute significantly to streamflow and was related to infiltration during isotopically depleted precipitation events. Although each water type was used by both Arizona pine and Douglas fir vegetation, the second water type was dominant in Douglas fir sap water. Therefore, we conclude that Arizona pine and Douglas fir can occupy different ecohydrological niches at this subhumid mountain location. Further, a lack of isotopic distinction between tightly bound and inferred mobile soil water signals that the ecohydrological water source separation hypothesis is not entirely applicable at this site. The results of this study broadly highlight how alternative definitions of tightly bound water can influence interpretation of data, and contribute to a more thorough understanding of interactions between subsurface storage and plant water dynamics. 相似文献
13.
Southern African forests are naturally fragmented yet hold a disproportionately high number of bird species. Carbon and nitrogen stable isotopes were measured in feathers from birds captured at Woodbush (n = 27 species), a large afromontane forest in the eastern escarpment of Limpopo province, South Africa. The δ13C signatures of a range of forest plants were measured to categorise the food base. Most plants sampled, including two of five grass species, had δ13C signatures typical of a C3 photosynthetic pathway (?29.5 ± 1.9‰). Three grass species had a C4 signature (?12.0 ± 0.6‰). Most bird species had δ13C values representing a predominantly C3‐based diet (?24.8‰ to ?20.7‰). δ15N values were as expected, with higher levels of enrichment associated with a greater proportion of dietary animal matter. The cohesive isotopic niche defining most species (n = 22), where the ranges for δ13C and δ15N were 2.4‰ and 3.4‰, respectively, highlight the difficulties in understanding diets of birds in a predominantly C3‐based ecosystem using carbon and nitrogen stable isotopes. However, variation in isotopic values between and within species provides insight into possible niche width and the use of resources by different birds within a forest environment. 相似文献
14.
BRIAN HAYDEN ALEXIA MASSA‐GALLUCCI JOE CAFFREY CHRIS HARROD STEFANO MARIANI MARTIN O’GRADY MARY KELLY‐QUINN 《Freshwater Biology》2011,56(9):1723-1735
1. Recent proliferation of hybridisation in response to anthropogenic ecosystem change, coupled with increasing evidence of the importance of ancient hybridisation events in the formation of many species, has moved hybridisation to the forefront of evolutionary theory. 2. In spite of this, the mechanisms (e.g. differences in trophic ecology) by which hybrids co‐exist with parental taxa are poorly understood. A unique hybrid zone exists in Irish freshwater systems, whereby hybrid offspring off two non‐native cyprinid fishes often outnumber both parental species. 3. Using stable isotope and gut content analyses, we determined the trophic interactions between sympatric populations of roach (Rutilus rutilus), bream (Abramis brama) and their hybrid in lacustrine habitats. 4. The diet of all three groups displayed little variation across the study systems, and dietary overlap was observed between both parental species and hybrids. Hybrids displayed diet, niche breadth and trophic position that were intermediate between the two parental species while also exhibiting greater flexibility in diet across systems. 相似文献
15.
Meica Valdivia Luciano O. Valenzuela Verónica Berriel Diego Rodríguez Paula Laporta Massimiliano Drago Alessandra Cani Leandro Bergamino 《Marine Mammal Science》2024,40(2):e13077
The study of resource partitioning within a community is central to understanding the processes that enable interspecific competition and coexistence. This study aimed to understand the resource partitioning and habitat preferences among odontocetes in Uruguay. We analyzed stable carbon and nitrogen isotopes data from the bone tissue of common dolphins (Delphinus delphis), Fraser's dolphins (Lagenodelphis hosei), false killer whales (Pseudorca crassidens), Lahille's bottlenose dolphins (Tursiops truncatus gephyreus), Burmeister's porpoises (Phocoena spinipinnis), and franciscana dolphins (Pontoporia blainvillei). Based on the isotopic values, false killer whale individuals were divided into two different ecological groups (ecotype 1 and 2). Isotopic values also suggest that franciscana dolphins, Burmeister's porpoises, Lahille's bottlenose dolphins, and false killer whales ecotype 1 feed on the continental shelf and/or high trophic level preys. At the other end of the gradient, values suggest Fraser's dolphins and false killer whales ecotype 2 use resources from the oceanic environment and/or lower trophic preys. Isotopic niche overlap was found between the common dolphin and Lahille's bottlenose dolphin and between Lahille's bottlenose dolphin and false killer whale ecotype 1. This work provides novel basic information about the trophic habit and feeding habitat of the odontocetes inhabiting one of the most important estuaries of South America. 相似文献
16.
The stable hydrogen isotope ratios (δD) of leaf wax n-alkanes record valuable information on plant and ecosystem water relations. It remains, however, unknown if leaf wax n-alkane δD values record only environmental variation during the brief period of time of leaf growth or if leaf wax n-alkane δD values are affected by environmental variability throughout the entire lifespan of a leaf. To resolve these uncertainties, we irrigated Populus trichocarpa trees with a pulse of deuterium-enriched water and used compound-specific stable hydrogen isotope analyses to test if the applied tracer could be recovered from leaf wax n-alkanes of leaves that were at different stages of their development during the tracer application. Our experiment revealed that only leaf wax n-alkanes from leaves that had developed during the time of the tracer application were affected, while leaves that were already fully matured at the time of the tracer application were not. We conclude from our study that under controlled environmental conditions, leaf wax n-alkanes are synthesized only early in the ontogeny of a leaf. Our experiment has implications for the interpretation of leaf wax n-alkane δD values in an environmental context, as it suggests that these compounds record only a brief period of the environmental variability that a leaf experiences throughout its life. 相似文献
17.
Aims Although the niche concept is of prime importance in ecology, the quantification of plant species' niches remains difficult. Here we propose that plant functional traits, as determinants of species performance, may be useful tools for quantifying species niche parameters over environmental gradients.Important findings Under this framework, the mean trait values of a species determine its niche position along gradients, and intraspecific trait variability determines its niche breadth. This trait-based approach can provide an operational assessment of niche for a potentially large number of species, making it possible to understand and predict species niche shifts under environmental changes. We further advocate a promising method that recently appeared in the literature, which partitions trait diversity into among- and within-community components as a way to quantify the species niche in units of traits instead of environmental parameters. This approach allows the switch of the focus from ecological niches to trait niches, facilitating the examination of species coexistence along undefined environmental gradients. Altogether, the trait-based approach provides a promising toolkit for quantifying the species ecological niche and for understanding the evolution of species niche and traits. 相似文献
18.
19.
- Water clarity can have a profound influence on aquatic ecosystem structure and processes via its effects on physical habitat (e.g., thermal regime, macrophyte density) and behavioural responses of biota (e.g., predator avoidance, reaction distances, foraging efficiency). Changes in foraging efficiencies under varying water clarity conditions are well documented for many freshwater piscivores in laboratory studies, but the influence of visual foraging conditions on interspecific trophic dynamics is poorly understood in wild populations, especially within water clarity ranges that are realistic for north‐temperate boreal lakes.
- Here, we used stable isotopes of nitrogen (15N/14N) and carbon (13C/12C) in fish muscle tissue to investigate how resource partitioning between two sympatric visual piscivores is related to water clarity and other habitat variables in 28 small (100–200 ha) Boreal Shield lakes. One of the species is adapted for foraging in low subsurface illumination (walleye, Sander vitreus) and the other in high subsurface illumination (smallmouth bass, Micropterus dolomieu).
- Trophic niche dimensions of the dark‐adapted predator did not respond significantly to differences in water clarity. In contrast, total isotopic niche space of the light‐adapted predator decreased significantly with increasing water clarity through greater use of pelagic resources and a narrower range of trophic levels, although these relationships were weak.
- Niche overlap ranged from 0 to 65%, but was not significantly related to water clarity. Rather, indices of prey availability appeared to be much stronger predictors of trophic interactions. Both species occupied more similar food‐web positions when yellow perch (Perca flavescens) abundance was higher, and had more similar niche size and trophic evenness with decreasing prey fish species richness.
- Results indicate that the trophic ecology of predators adapted to foraging in low light conditions is less influenced by water clarity than that of predators adapted to foraging in high light conditions. However, prey availability, rather than the environmental conditions in which foraging occurs, may be a more important driver of resource partitioning among generalists even when light conditions favour one species’ foraging strategy over another.
20.
Harry H. Marshall Richard Inger Andrew L. Jackson Robbie A. McDonald Faye J. Thompson Michael A. Cant 《Ecology letters》2019,22(11):1990-1992
Hette‐Tronquart (2019, Ecol. Lett.) raises three concerns about our interpretation of stable isotope data in Sheppard et al. (2018, Ecol. Lett., 21, 665). We feel that these concerns are based on comparisons that are unreasonable or ignore the ecological context from which the data were collected. Stable isotope ratios provide a quantitative indication of, rather than being exactly equivalent to, trophic niche. 相似文献