首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Insight into how plants simultaneously cope with multiple stresses, for example, when challenged with biotic stress from pathogen infection and abiotic stress from drought, is important both for understanding evolutionary trade‐offs and optimizing crop responses to these stresses. Mechanisms by which initial plant immune signaling antagonizes abscisic acid (ABA) signal transduction require further investigation. Using a chemical genetics approach, the small molecule [5‐(3,4‐dichlorophenyl)furan‐2‐yl]‐piperidine‐1‐ylmethanethione (DFPM) has previously been identified due to its ability to suppress ABA signaling via plant immune signaling components. Here, we have used forward chemical genetics screening to identify DFPM‐insensitive loci by monitoring the activity of ABA‐inducible pRAB18::GFP in the presence of DFPM and ABA. The ability of DFPM to attenuate ABA signaling was reduced in rda mutants (resistant to DFPM inhibition of ABA signaling). One of the mutants, rda2, was mapped and is defective in a gene encoding a lectin receptor kinase. RDA2 functions in DFPM‐mediated inhibition of ABA‐mediated reporter expression. RDA2 is required for DFPM‐mediated activation of immune signaling, including phosphorylation of mitogen‐activated protein kinase (MAPK) 3 (MPK3) and MPK6, and induction of immunity marker genes. Our study identifies a previously uncharacterized receptor kinase gene that is important for DFPM‐mediated immune signaling and inhibition of ABA signaling. We demonstrate that the lectin receptor kinase RDA2 is essential for perceiving the DFPM signal and activating MAPKs, and that MKK4 and MKK5 are required for DFPM interference with ABA signal transduction.  相似文献   

3.
4.
Light and abiotic stress both strongly modulate plant growth and development. However, the effect of light‐responsive factors on growth and abiotic stress responses in wheat (Triticum aestivum) is unknown. G–box binding factors (GBFs) are blue light‐specific components, but their function in abiotic stress responses has not been studied. Here we identified a wheat GBF1 gene that mediated both the blue light‐ and abiotic stress‐responsive signaling pathways. TaGBF1 was inducible by blue light, salt and exposure to abscisic acid (ABA). TaGBF1 interacted with a G–box light‐responsive element in vitro and promoted a blue‐light response in wheat and Aradidopsis thaliana. Both TaGBF1 over‐expression in wheat and its heterologous expression in A. thaliana heighten sensitivity to salinity and ABA, but its knockdown in wheat conferred resistance to high salinity and ABA. The expression of AtABI5, a key component of the ABA signaling pathway in A. thaliana, and its homolog Wabi5 in wheat was increased by transgenic expression of TaGBF1. The hypersensitivity to salt and ABA caused by TaGBF1 was not observed in the abi5 mutant background, showing that ABI5 is the mediator in TaGBF1‐induced abiotic stress responses. However, the hypersensitivity to salt conferred by TaGBF1 is not dependent on light. This suggests that TaGBF1 is a common component of blue light‐ and abiotic stress‐responsive signaling pathways.  相似文献   

5.
6.
7.
Wang Y  Liu C  Li K  Sun F  Hu H  Li X  Zhao Y  Han C  Zhang W  Duan Y  Liu M  Li X 《Plant molecular biology》2007,64(6):633-644
The nuclear protein ETHYLENE INSENSITIVE2 (EIN2) is a central component of the ethylene signal transduction pathway in plants, and plays an important role in mediating cross-links between several hormone response pathways, including abscisic acid (ABA). ABA mediates stress responses in plants, but there is no report on the role of EIN2 on plant response to salt and osmotic stresses. Here, we show that EIN2 gene regulates plant response to osmotic and salt stress through an ABA-dependent pathway in Arabidopsis. The expression of the EIN2 gene is down-regulated by salt and osmotic stress. An Arabidopsis EIN2 null mutant was supersensitive to both salt and osmotic stress conditions. Disruption of EIN2 specifically altered the expression pattern of stress marker gene RD29B in response to the stresses, but not the stress- or ABA-responsive genes RD29A and RD22, suggesting EIN2 modulates plant stress responses through the RD29B branch of the ABA response. Furthermore, disruption of EIN2 caused substantial increase in ABA. Lastly, our data showed that mutations of other key genes in ethylene pathway also had altered sensitivity to abiotic stresses, indicating that the intact ethylene may involve in the stress response. Taken together, the results identified EIN2 as a cross-link node in ethylene, ABA and stress signaling pathways, and EIN2 is necessary to induce developmental arrest during seed germination, and seedling establishment, as well as subsequent vegetative growth, thereby allowing the survival and growth of plants under the adverse environmental conditions. Youning Wang and Chuang Liu contributed equally to this work.  相似文献   

8.
9.
10.
Since plants cannot move to avoid stress, they have sophisticated acclimation mechanisms against a variety of abiotic stresses. The phytohormone abscisic acid (ABA) plays essential roles in abiotic stress tolerances in land plants. Therefore, it is interesting to address the evolutionary origins of ABA metabolism and its signaling pathways in land plants. Here, we focused on 48 ABA-related Arabidopsis thaliana genes with 11 protein functions, and generated 11 orthologous clusters of ABA-related genes from A. thaliana, Arabidopsis lyrata, Populus trichocarpa, Oryza sativa, Selaginella moellendorffii, and Physcomitrella patens. Phylogenetic analyses suggested that the common ancestor of these six species possessed most of the key protein functions of ABA-related genes. In two species (A. thaliana and O. sativa), duplicate genes related to ABA signaling pathways contribute to the expression variation in different organs or stress responses. In particular, there is significant expansion of gene families related to ABA in evolutionary periods associated with morphological divergence. Taken together, these results suggest that expansion of the gene families related to ABA signaling pathways may have contributed to the sophisticated stress tolerance mechanisms of higher land plants.  相似文献   

11.
12.
13.
14.

In plants, abscisic acid (ABA)-mediated responses during abiotic stress, growth, and development have been well studied. Many chemicals which modulate ABA responses have been identified. In this study, we report that dithiothreitol (DTT), an inducer of endoplasmic reticulum (ER) stress, can overcome ABA-mediated responses in plants. In rice seedlings, combined treatment of ABA and DTT increased shoot growth compared to ABA alone. The phenotype correlated with the expression pattern of ABA and ER stress-responsive genes. In finger millet, increase in root growth was observed in combined treatment, compared to ABA treatment. Experiments using dimethyl sulfoxide indicated that the phenotype observed was specific to DTT. Priming of germinated rice seeds with DTT followed by salinity stress indicated that DTT can mask the ABA effect. In ABA bioassay using cotton petioles, an increase in intact petioles in combined treatment of ABA and DTT was observed compared to ABA treatment. The expression of OsWRKY48, an ABA-responsive gene, was down-regulated in combined treatment, indicating that the target of DTT-induced ER stress is upstream of OsWRKY48 in the ABA signaling pathway. The study demonstrated that DTT-induced ER stress can be a potential mechanism to regulate ABA-mediated responses in plants.

  相似文献   

15.
16.
MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.  相似文献   

17.
18.
19.
C2H2 -type zinc finger proteins (ZFPs) are thought to play important roles in modulating the responses of plants to drought, salinity and oxidative stress. However, direct evidence is lacking for the involvement of these ZFPs in abscisic acid (ABA)-induced antioxidant defense in plants. In this study, the role of the rice (Oryza sativa L. sub. japonica cv. Nipponbare) C 2 H 2 -type ZFP ZFP182 in ABA-induced antioxidant defense and the relationship between ZFP182 and two rice MAPKs, OsMPK1 and OsMPK5 in ABA signaling were investigated. ABA treatment induced the increases in the expression of ZFP182, OsMPK1 and OsMPK5, and the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in rice leaves. The transient gene expression analysis and the transient RNA interference (RNAi) analysis in protoplasts showed that ZFP182, OsMPK1 and OsMPK5 are involved in ABA-induced up-regulation in the activities of SOD and APX. Besides, OsMPK1 and OsMPK5 were shown to be required for the up-regulation in the expression of ZFP182 in ABA signaling, but ZFP182 did not mediate the ABA-induced up-regulation in the expression of OsMPK1 and OsMPK5. These results indicate that ZFP182 is required for ABA-induced antioxidant defense and the expression of ZFP182 is regulated by rice MAPKs in ABA signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号