首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skin acts an important protection role in animal survival and it evolves with the animal divergence. We identified the conserved miRNA families of skin among duck and other species. Cluster analysis showed that the species with similar skin characteristics were clustered into the same group, indicating miRNAs are important in skin function and skin evolution. The miRNA profiles demonstrated that different miRNA regulation mechanism may exist in contour feather follicles (with the surrounding skin) and down feather follicles (with the surrounding skin). Comparing the highly abundant miRNAs with those of mammalian hair follicles and skins, different miRNAs and miRNA families were found, suggesting the different ways in feather follicles and mammalian hair follicles. Bioinformatics prediction indicated that seven miRNAs probably targeted the genes of Wnt/β-catenin, Shh/BMP and Notch pathways which were important in feather morphogenesis. Further analysis should be conducted to experimentally validate the relationships between miRNAs and their predicted target genes because the target genes were based exclusively upon the bioinformatics.  相似文献   

2.
A hunter-killed wild turkey (Meleagris gallopavo silvestris) was submitted for examination because of numerous 2 to 30 mm diameter, yellowish, hard nodules in the skin. The nodules were confined to the skin and did not involve subcutaneous tissues. Nodules consisted of dilated feather follicles packed with a caseous tan to pale yellow material. Histologically, affected feather follicles were markedly dilated and filled with laminated keratin debris. The lesions were determined to be multiple feather follicle cysts of unknown etiology.  相似文献   

3.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine‐tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non‐moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather‐level decisions on where to live, contradicting the current view that mites perform “mass”, or “blind” movements across wing feathers. Moreover, our findings indicate that “rare” distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient‐bird‐feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

4.
5.
The adhesion of Campylobacter jejuni to chicken skin, along with the associated morphological changes under aerobic conditions at 4, 25, and 37 degrees C and microaerobic (O2 5%, CO2 10%, N2 85%) conditions, were investigated using confocal laser scanning microscopy (CLSM), flow cytometry, and plate counting. The morphological change of C. jejuni from a spiral shape to a coccoid form or VBNC form (viable but nonculturable form) progressed rapidly under aerobic conditions at 25, 37, and 4 degrees C. As regards adhesion, the C. jejuni cells were mostly located in the crevices and feather follicles of the chicken skin, where the cells in the feather follicles floated freely in the entrapped water, even after the skin was rinsed quite thoroughly. CLSM also revealed the penetration of some spiral-shaped C. jejuni cells into the chicken skin. Even after changing their shape at various temperatures, coccoid-form C. jejuni cells were still found in the crevices and feather follicles of the chicken skin.  相似文献   

6.
Multiple roles for elastic fibers in the skin.   总被引:4,自引:0,他引:4  
Dermal elastic fibers are believed to have a primary role in providing elastic stretch and recoil to the skin. Here we compare the structural arrangement of dermal elastic fibers of chick skin and different animal species. Most elastic fibers in chick skin are derived from cells that line the feather follicle and/or smooth muscle that connects the pterial and apterial muscle bundles to feather follicles. Elastic fibers in the dermis of animals with single, primary hair follicles are derived from cells lining the hair follicle or from the ends of the pili muscle, which anchors the muscle to the matrix or to the hair follicle. Each follicle is interconnected with elastic fibers. Follicles of animals with primary and secondary (wool) hair follicles are also interconnected by elastic fibers, yet only the elastic fibers derived from the primary follicle are connected to each primary follicle. Only the primary hair follicles are connected to the pili muscle. Human skin, but not the skin of other primates, is significantly different from other animals with respect to elastic fiber organization and probably cell of origin. The data suggest that the primary role for elastic fibers in animals, with the possible exception of humans, is movement and/or placement of feathers or hair.  相似文献   

7.
The bat skin shows an unusual morphology that corresponds to flying adaptations but also performs multiple functions including a protective barrier against microbes and parasites. Here, we compare the microscopic structure of the skin and hairs collected from the membranes with other body parts in the Common Pipistrelle (Pipistrellus pipistrellus) in relation to parasite availability. Statistical analysis of whole‐skin thickness revealed two main groups according to body regions; the first with thin skin (wing and tail membrane) and the second with thick skin (head and dorsum, abdomen, footpad). The density of hair was evaluated by a novel method, and it revealed that the density was significantly higher in the head region than in dorsal and ventral body parts. These differences possibly play a role for bat ectoparasites when choosing the preferred region of their host. Along the axis of each hair, the scale morphology was found to be variable. Hair morphology, however, did not vary among body regions. Mast cells were numerous in the hairy areas around vessels and hair follicles of the dorsum and abdomen, which are easily accessible to ectoparasites. Increased numbers of mast cells in hair‐bearing skin are part of the host adaptation system in parasite‐preferred locations.  相似文献   

8.
Fault bars are common stress‐induced feather abnormalities that could produce feather damage thus reducing flight performance. For that reason, it has been hypothesized that birds may have evolved adaptive strategies that reduce the costs of fault bars (the ‘fault bar allocation hypothesis’). An untested prediction of this hypothesis is that fault bars in important feathers for flight (wing and tail) should be less abundant where they produce more feather damage. We tested such a prediction using moulted wing and tail feathers of the long‐distance migrant Swainson's hawk Buteo swainsoni in its Argentinean wintering quarters. We recorded the occurrence of fault bars of different strengths (light, medium and strong) and the damage (lost of a portion of the vane) produced by them. The occurrence of fault bars was very variable, with strong ones being rare throughout and light and medium fault bars being more frequent in the tail than in the wing. Risk of feather damage was similarly high and low across feather groups for strong and light fault bars, respectively, and higher in the wing than in the tail for medium strength. The occurrence of fault bars of different strengths on different feather groups was negatively correlated with their propensity to produce feather damage. At low damage risk (<5%), the occurrence of fault bars was highly variable depending on the feather group, but above 5% of feather damage the occurrence of fault bars was highly reduced throughout. Our results supports the ‘fault bar allocation hypothesis’ of natural selection reducing fault bar occurrence where fault bars are more risky, but further suggest that selection pressure could be relaxed in other instances, leaving the way free for other mechanisms to shape fault bar occurrence.  相似文献   

9.
The impact of feather‐degrading bacilli on feathers depends on the presence or absence of melanin. In vitro studies have demonstrated that unmelanized (white) feathers are more degradable by bacteria than melanized (dark) ones. However, no previous study has looked at the possible effect of feather‐degrading bacilli on the occurrence of patterns of unmelanized patches on otherwise melanized feathers. The pied flycatcher Ficedula hypoleuca Pallas, 1764 is a sexually dimorphic passerine with white wing bands consisting of unmelanized patches on dark flight feathers. These patches are considered to be a sexually selected trait in Ficedula flycatchers, especially in males, where the patches are more conspicuous (larger and possibly whiter) than in females. Using in vitro tests of feather bacterial degradation, we compared the degradability of unmelanized and melanized areas of the same feather for 127 primaries collected from the same number of individuals in a population breeding in central Spain (58 males and 69 females). In addition, we also looked for sex differences in feather degradability. Based on honest signalling theory and on the fact that there is stronger sexual selection for males to signal feather quality than in females, we predicted that unmelanized areas should be more degradable by bacteria than melanized ones within the same feather, and that these unmelanized areas should also be more degradable in males than in females. We confirmed both predictions. Microstructural differences between cross‐section dimensions of unmelanized and melanized barbs, but not differences in the density of barbs within unmelanized and melanized areas of feathers in males and females, could partly explain differences in degradability. This is the first study to show differences in bacterial degradability among markings on the same feather and among unmelanized feather patches between males and females as predicted by sexual selection theory. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 409–419.  相似文献   

10.
Migration causes temporal and energetic constraints during plumage development, which can compromise feather structure and function. In turn, given the importance of a good quality of flight feathers in migratory movements, selection may have favoured the synthesis of feathers with better mechanical properties than expected from a feather production constrained by migration necessities. However, no study has assessed whether migratory behaviour affects the relationship between the mechanical properties of feathers and their structural characteristics. We analysed bending stiffness (a feather mechanical property which is relevant to birds’ flight), rachis width and mass (two main determinants of variation in bending stiffness) of wing and tail feathers in migratory and sedentary blackcaps Sylvia atricapilla. Migratory blackcaps produced feathers with a narrower rachis in both wing and tail, but their feathers were not significantly lighter; in addition, bending stiffness was higher in migratory blackcaps than in sedentary blackcaps. Such unexpected result for bending stiffness remained when we statistically controlled for individual variation in rachis width and feather mass, which suggests the existence of specific mechanisms that help migratory blackcaps to improve the mechanical behaviour of their feathers under migration constraints.  相似文献   

11.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

12.
Chen X  Bai H  Li L  Zhang W  Jiang R  Geng Z 《Molecular biology reports》2012,39(11):9843-9848
In birds, downy feather quantity mainly affected by the follicles. Wnt6, a secreted cysteine-rich protein, plays a key role in follicular development as an intercellular signaling molecule. The present study was to investigate the follicle development and Wnt6 polymorphism in Wanxi-white geese, a Chinese indigenous breed. In total, 300 fertilized eggs were hatched. At embryonic stage and on early birth goslings, the diameter and density of follicles from different sites were examined after sectioning and staining. The results showed that the diameter of primary feather follicles in thorax, venter, dorsum and flank had no difference at embryonic stage. In contrast, after birth, thorax and ventral feather follicles had greater diameter than those on dorsum and flank. Similarly, the primary feather follicle density was higher in thorax and venter than in dorsum and flank at embryonic stage. The secondary feather follicle diameter in flank was greater than that in other sites examined. The secondary follicle showed lush growth in E27 with thickest in ventral and thorax. Overall, follicle formed consistently in dorsal and flank, and follicle in thorax and ventral formed in another consistent way. The polymorphism study showed 2 single nucleotide polymorphisms of Wnt6 and 3 genotypes identified. Sequencing revealed two nucleotide transitions, T451C and A466G, which were synonymous mutations causing codons for aspartate and lysine to change from GAU to GAC and from AAA to AAG, respectively. This information about follicle development and Wnt6 polymorphisms would provide potential utilization in marker-assisted selection program for down feather selection.  相似文献   

13.
Patterns of feather wear in birds captured in spring have traditionally been analysed to describe the extent of winter moult in long‐distance migrants. However, the interpretation of feather wear may be rendered extremely difficult due to long moult periods, by the progress of the season, and by the existence of complex moult patterns. Here, stable isotope analysis is used to determine the origin of the wing feather generations present in Savi's warblers Locustella luscinioides captured in Portugal. Carbon, nitrogen and hydrogen isotope ratios of feathers of known European origin differed significantly from those known to have grown in Africa. A discriminant analysis, in which 91.1% of the cross validated samples were correctly classified, was used to determine the origin of tail and wing feathers collected from birds caught when they returned to the breeding quarters. The interpretation of feather‐wear generally agreed with the stable isotope analysis, but some inconsistencies were identified. The extent of winter moult in Savi's warblers is described and its moult strategy discussed.  相似文献   

14.
15.
During partial moults birds replace a variable number or percentage of old feathers. This quantity, known as moult extent, has been a primary variable used in comparative studies. However, different spatial configurations of feather replacement may result from an equal number of renewed feathers. Few studies have addressed spatial aspects of moult, which may vary among species, among individuals of the same species and between episodes at the individual level. We present a novel approach to quantify the spatial configuration of a wing‐moult episode, hereafter referred to as moult topography, which comprises two elements, namely extent and vector, the latter condensing the spatial configuration of the replaced feathers on the wing plane. We apply this method to investigate preformative (post‐juvenile) wing‐feather moult pattern in the Spot‐breasted Wren Pheugopedius maculipectus and the White‐breasted Wood‐Wren Henicorhina leucosticta. We specified a null model of wing‐moult topography by which feather replacement follows a discrete anterior–posterior (vertical) axis between tracts and a discrete proximal–distal (horizontal) axis within tracts, and whereby wing feathers from a new tract are replaced only if all the feathers from the previous (anterior) tract have been replaced. Our sample of Spot‐breasted Wrens showed a strict single pattern of replacement that did not differ significantly from the null model. Our sample of White‐breasted Wood‐Wrens, however, differed significantly from the null model, showing prioritization of proximal wing feathers closer to the body. These differences might have biological relevance, for example in mate selection or in response to different environmental stressors, and might reveal the influence of these factors on the evolution of moult strategies. Overall, moult topography provides a new approach to future ecological and evolutionary studies of moult.  相似文献   

16.
Wing morphology is known to strongly affect flight performance by affecting lift and drag during flight. Performance may consequently deteriorate during feather moult due to the creation of feather gaps in the wing. Since wing gap size may directly affect the extent of reduced flight capacity, rapid moult involving the creation of large feather gaps is expected to substantially impair flight compared with the small gaps induced by a slower moult. To examine the factors affecting wing-feather moult speed, we studied adults of nineteen resident or very short-distance migrant passerine species during their post-breeding moult using a model-selection framework following a phylogenetically controlled analysis. We examined the speed of wing-feather moult in relation to each species’ flight distance index that was estimated based on local foraging movements rather than on longer flights (e.g., migration), assessed by the Delphi technique of expert evaluation. Moult speed was also examined with respect to six morphometric variables: body mass, wing loading, the feather comprising the tip of the wing, aspect ratio, wing span, and wing area. Our results suggest that flight distance index is the most important factor determining the speed of wing-feather moult in songbirds. Species that regularly fly a shorter distance were found to moult quickly, and those that take relatively longer flights moult slowly. These results suggest that the aerodynamic cost of wing area reduction due to feather moult shapes the evolution of annual routine processes by dictating a slower moult speed (resulting in small wing gaps) for species that regularly fly long distances and consequently may be affected more substantially by large wing gaps compared with short distance flyers.  相似文献   

17.
The distribution and ultrastructure of Merkel cells were described in detail in piscivorous bats through immunohistochemistry and transmission electron microscopy techniques. The findings indicated that Merkel cells are commonly found in raised-domes,hair follicles and in the basal epidermis of the skin from their back,abdomen,intercrural membranes,wing membranes and footpads. However,the density of Merkel cells is significantly higher in the footpad than in other places. These results suggested that there ...  相似文献   

18.
The King penguin epidermis has a stratum corneum of flattened solidly keratinized cells without basophilic nuclear remnants. It contains keratin bound substances and is without an underlying stratum granulosum. The insunken feather follicles and the thick phospholipid-rich cornified layer appear to be adaptations for aquatic life.  相似文献   

19.
We detected HB9 protein during tarsometatarsal scale skin and late feather development. Immunofluorescent analyses with N-terminal 14 amino acids antiserum revealed that HB9 was strongly expressed in epidermal basal cells of the outer scale face in tarsometatarsal scale skin. Specific expression was also detected in dermal cells at the root region of the feather and around the feather follicle. Furthermore, we observed precise distribution of HB9 protein by immunoelectron microscopy. We detected HB9 protein not only in the nucleus, but also in the cytoplasm in tarsometatarsal scale skin. However, in feather skin HB9 protein was found in the nucleus but not in the cytoplasm. Cytoplasmic localization of HB9 protein in tarsometatarsal scale skin was observed especially in the endoplasmic reticulum and the Golgi apparatus. To address the mechanism of nuclear–cytoplasmic translocation, we determined the nuclear localization signal (NLS) sequences by using eukaryotic green fluorescent protein fusion protein in primary keratinocyte culture. Chick HB9 homeoprotein has two types of the NLS sequences in its homeodomain. One of them is a bipartite type as representatively found in Xenopus nucleoplasmin. The other is very similar to hexapeptide NLS sequences identified in pancreatic duodenum homeobox 1 (PDX1). These sequences functioned not only in keratinocytes but also in dermal fibroblasts. They are conserved in Xenopus, mouse, and human HB9 ortholog. These results indicate that HB9 protein might be involved in chick tarsometatarsal scale and feather development and that nuclear import of HB9 protein might be regulated by these NLS sequences in the homeodomain.  相似文献   

20.
Many species of waterfowl undergo a post‐breeding simultaneous flight feather moult (wing moult) which renders them flightless and vulnerable to predation for up to 4 weeks. Here we present an analysis of the correlations between individual time‐budgets and body mass states in 13 captive Barnacle Geese Branta leucopsis throughout an entire wing moult. The daily percentage of time spent resting was positively correlated with initial body mass at the start of wing moult. Behaviour of individual birds during wing moult is dependent on initial physiological state, which may in turn be dependent on foraging ability; the storage of energy before the start of wing moult will help birds to reduce exposure to the dangers of predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号