首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many cyanobacteria exhibit surface motility powered by type 4 pili (T4P). In the model filamentous cyanobacterium Nostoc punctiforme, the T4P systems are arrayed in static, bipolar rings in each cell. The chemotaxis‐like Hmp system is essential for motility and the coordinated polar accumulation of PilA on cells in motile filaments, while the Ptx system controls positive phototaxis. Using transposon mutagenesis, a gene, designated hmpF, was identified as involved in motility. Synteny among filamentous cyanobacteria and the similar expression patterns for hmpF and hmpD imply that HmpF is part of the Hmp system. Deletion of hmpF produced a phenotype distinct from other hmp genes, but indistinguishable from pilB or pilQ. Both an HmpF‐GFPuv fusion protein, and PilA, as assessed by in situ immunofluorescence, displayed coordinated, unipolar localization at the leading pole of each cell. Reversals were modulated by changes in light intensity and preceded by the migration of HmpF‐GFPuv to the lagging cell poles. These results are consistent with a model where direct interaction between HmpF and the T4P system activates pilus extension, the Hmp system facilitates coordinated polarity of HmpF to establish motility, and the Ptx system modulates HmpF localization to initiate reversals in response to changes in light intensity.  相似文献   

2.
3.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous inherited disease affecting vesicle trafficking among lysosome-related organelles. The Hps3, Hps5, and Hps6 genes are mutated in the cocoa, ruby-eye-2, and ruby-eye mouse pigment mutants, respectively, and their human orthologs are mutated in HPS3, HPS5, and HPS6 patients. These three genes encode novel proteins of unknown function. The phenotypes of Hps5/Hps5,Hps6/Hps6 and Hps3/Hps3,Hps6/Hps6 double mutant mice mimic, in coat and eye colors, in melanosome ultrastructure, and in levels of platelet dense granule serotonin, the corresponding phenotypes of single mutants. These facts suggest that the proteins encoded by these genes act within the same pathway or protein complex in vivo to regulate vesicle trafficking. Further, the Hps5 protein is destabilized within tissues of Hps3 and Hps6 mutants, as is the Hps6 protein within tissues of Hps3 and Hps5 mutants. Also, proteins encoded by these genes co-immunoprecipitate and occur in a complex of 350 kDa as determined by sucrose gradient and gel filtration analyses. Together, these results indicate that the Hps3, Hps5, and Hps6 proteins regulate vesicle trafficking to lysosome-related organelles at the physiological level as components of the BLOC-2 (biogenesis of lysosome-related organelles complex-2) protein complex and suggest that the pathogenesis and future therapies of HPS3, HPS5, and HPS6 patients are likely to be similar. Interaction of the Hps5 and Hps6 proteins within BLOC-2 is abolished by the three-amino acid deletion in the Hps6(ru) mutant allele, indicating that these three amino acids are important for normal BLOC-2 complex formation.  相似文献   

4.
5.
Type IV pilus genes have been shown to be required for social gliding motility in Myxococcus xanthus . We report the discovery of four additional pil genes: pilD , a homologue of type IV prepilin leader peptidases; and pilG , pilH and pilI , which have no known homologues in other type IV pilus systems. pilH encodes an ATP-binding cassette (ABC) transporter homologue, the first such homologue to be required for the biogenesis of any bacterial pilus type. pilG and pilI are co-transcribed with pilH and appear to be functionally related to pilH . Null mutants of pilG , pilH and pilI all lack social motility, are deficient in pilus production, have elevated sporulation efficiencies and display similar developmental abnormalities. In addition, all three mutations reduced the amount of PilA found in the supernatant after cells were sedimented from liquid culture. We suggest that the products of these three genes form a single ABC exporter complex, in which pilI is an integral membrane protein with membrane-spanning domains, and pilG is an accessory factor. The complex may participate in pilus assembly and/or the export of PilA pilin.  相似文献   

6.
Myxococcus xanthus is an environmental bacterium with two forms of motility. One type, known as social motility, is dependent on extension and retraction of Type‐IV pili (T4P) and production of extracellular polysaccharides (EPS). Several signaling systems have been linked to regulation of T4P‐dependent motility. In particular, expression of the pilin subunit pilA requires the PilSR two‐component signaling system (TCS). A second TCS, PilS2R2, encoded within the same locus that encodes PilSR, has also been linked to M. xanthus T4P‐dependent motility. We demonstrate that PilSR and PilS2R2 regulate M. xanthus T4P‐dependent motility through distinct pathways. Consistent with known roles of PilSR, our results indicate that the primary function of PilSR is to regulate expression of pilA. In contrast, PilS2 and PilR2 have little to no affect on PilA protein levels. However, deletion of pilR2 resulted in a reduction of assembled pili, significant decreases in EPS production and loss of T4P‐dependent motility. Furthermore, the pilR2 mutation led to increased production of outer membrane vesicles (OMV). Collectively, we propose that PilS2R2 is required for proper assembly of T4P and regulation of OMV production, and hypothesize that production of these vesicles is related to M. xanthus motility.  相似文献   

7.
The natural transformation system of Thermus thermophilus has become a model system for studies of the structure and function of DNA transporter in thermophilic bacteria. The DNA transporter in T. thermophilus is functionally linked to type IV pili (T4P) and the major pilin PilA4 plays an essential role in both systems. However, T4P are dispensable for natural transformation. In addition to pilA4, T. thermophilus has a gene cluster encoding the three additional pilins PilA1–PilA3; deletion of the cluster abolished natural transformation but retained T4P biogenesis. In this study, we investigated the roles of single pilins PilA1, PilA2 and PilA3 in natural transformation by mutant studies. These studies revealed that each of these pilins is essential for natural transformation. Two of the pilins, PilA1 and PilA2, were found to bind dsDNA. PilA1 and PilA3 were detected in the inner membrane (IM) but not in the outer membrane (OM) whereas PilA2 was present in both membranes. All three pilins where absent in pilus fractions. This suggests that the pilins form a short DNA binding pseudopilus anchored in the IM. PilA1 was found to bind to the IM assembly platform of the DNA transporter via PilM and PilO. These data are in line with the hypothesis that a DNA binding pseudopilus is connected via an IM platform to the cytosolic motor ATPase PilF.  相似文献   

8.
Hermansky-Pudlak syndrome (HPS) is a genetic disease of lysosome, melanosome, and granule biogenesis. Mutations of six different loci have been associated with HPS in humans, the most frequent of which are mutations of the HPS1 and HPS4 genes. Here, we show that the HPS1 and HPS4 proteins are components of two novel protein complexes involved in biogenesis of melanosome and lysosome-related organelles: biogenesis of lysosome-related organelles complex-(BLOC) 3 and BLOC-4. The phenotypes of Hps1-mutant (pale-ear; ep) and Hps4-mutant (light-ear; le) mice and humans are very similar, and cells from ep and le mice exhibit similar abnormalities of melanosome morphology. HPS1 protein is absent from ep-mutant cells, and HPS4 from le-mutant cells, but le-mutant cells also lack HPS1 protein. HPS4 protein seems to be necessary for stabilization of HPS1, and the HPS1 and HPS4 proteins co-immunoprecipitate, indicating that they are in a complex. HPS1 and HPS4 do not interact directly in a yeast two-hybrid system, although HPS4 interacts with itself. In a partially purified vesicular/organellar fraction, HPS1 and HPS4 are both components of a complex with a molecular mass of approximately 500 kDa, termed BLOC-3. Within BLOC-3, HPS1 and HPS4 are components of a discrete approximately 200-kDa module termed BLOC-4. In the cytosol, HPS1 (but not HPS4) is part of yet another complex, termed BLOC-5. We propose that the BLOC-3 and BLOC-4 HPS1.HPS4 complexes play a central role in trafficking cargo proteins to newly formed cytoplasmic organelles.  相似文献   

9.
Myxococcus xanthus is a Gram‐negative bacterium capable of complex developmental processes involving vegetative swarming and fruiting body formation. Social (S‐) gliding motility, one of the two motility systems used by M. xanthus, requires at least two cell surface structures: type IV pili (TFP) and extracellular polysaccharides (EPS). Extended TFP that are composed of thousands of copies of PilA retract upon binding to EPS and thereby pull the cell forward. TFP also act as external sensor to regulate EPS production. In this study, we generated a random PilA mutant library and identified one derivative, SW1066, which completely failed to undergo developmental processes. Detailed characterization revealed that SW1066 produced very little EPS but wild‐type amounts of PilA. These mutated PilA subunits, however, are unable to assemble into functional TFP despite their ability to localize to the membrane. By preventing the mutated PilA of SW1066 to translocate from the cytoplasm to the membrane, fruiting body formation and EPS production were restored to the levels observed in mutant strains lacking PilA. This apparent connection between PilA membrane accumulation and reduction in surface EPS implies that specific cellular PilA localization are required to maintain the EPS level necessary to sustain normal S‐motility in M. xanthus.  相似文献   

10.
Type IV pili are an efficient and versatile device for bacterial surface motility. They are widespread among the beta-, gamma-, and delta-proteobacteria and the cyanobacteria. Within that diversity, there is a core of conserved proteins that includes the pilin (PilA), the motors PilB and PilT, and various components of pilus biogenesis and assembly, PilC, PilD, PilM, PilN, PilO, PilP, and PilQ. Progress has been made in understanding the motor and the secretory functions. PilT is a motor protein that catalyzes pilus retraction; PilB may play a similar role in pilus extension. Type IV pili are multifunctional complexes that can act as bacterial virulence factors because pilus-based motility is used to spread pathogens over the surface of a tissue, or to build multicellular structures such as biofilms and fruiting bodies.  相似文献   

11.
Hermansky-Pudlak Syndrome (HPS) is a set of genetically heterogeneous diseases caused by mutations in one of nine known HPS genes. HPS patients display oculocutaneous hypopigmentation and bleeding diathesis and, depending on the disease subtype, pulmonary fibrosis, congenital nystagmus, reduced visual acuity, and platelet aggregation deficiency. Mouse models for all known HPS subtypes have contributed greatly to our understanding of the disease, but many of the molecular and cellular mechanisms underlying HPS remain unknown. Here, we characterize ocular defects in the zebrafish (Danio rerio) mutant snow white (snw), which possesses a recessive, missense mutation in hps5 (hps5I76N). Melanosome biogenesis is disrupted in snw/hps5 mutants, resulting in hypopigmentation, a significant decrease in the number, size, and maturity of melanosomes, and the presence of ectopic multi-melanosome clusters throughout the mutant retina and choroid. snw/hps5I76N is the first Hps5 mutation identified within the N-terminal WD40 repeat protein–protein binding domain. Through in vitro coexpression assays, we demonstrate that Hps5I76N retains the ability to bind its protein complex partners, Hps3 and Hps6. Furthermore, while Hps5 and Hps6 stabilize each other’s expression, this stabilization is disrupted by Hps5I76N. The snw/hps5I76N mutant provides a valuable resource for structure–function analyses of Hps5 and enables further elucidation of the molecular and cellular mechanisms underlying HPS.  相似文献   

12.
Twitching motility is a unique form of bacterial propulsion on solid surfaces associated with cycles of extension, tethering and retraction of type IV pili (T4P). Although investigations over the last two decades in a number of species have identified the majority of the genes involved in this process, we are still learning how these pili are assembled and the mechanics by which bacteria use T4P to drag themselves from one place to another. Among the puzzles that remain to be solved is the mechanism by which hydrolysis of ATP is coupled to pilus assembly and disassembly, and how the cell envelope structure is modified to accommodate the passage of the pilus through the periplasm. Unravelling of these and other enigmas in the T4P system will not only teach us more about these important colonization and virulence factors, but also help us to understand related processes such as type II secretion, which relies on a set of proteins homologous to those in the T4P system, and bacterial conjugation, involving retractable pili belonging to the F-like subgroup of the type IV secretion family. This review focuses on recent discoveries relating to the assembly and function of T4P in generation of twitching motility.  相似文献   

13.
In Pseudomonas aeruginosa, most proteins involved in type IVa pilus (T4aP) biogenesis are highly conserved except for the major pilin PilA and the minor pilins involved in pilus assembly. Here we show that each of the five major pilin alleles is associated with a specific set of minor pilins, and unrelated strains with the same major pilin type have identical minor pilin genes. The sequences of the minor pilin genes of strains with group III and V pilins are identical, suggesting that these groups diverged recently through further evolution of the major pilin cluster. Both gene clusters are localized on a single ‘pilin island’ containing putative tRNA recombinational hotspots, and a similar organization of pilin genes was identified in other Pseudomonas species. To address the biological significance of group‐specific differences, cross‐complementation studies using group II (PAO1) and group III (PA14) minor pilins were performed. Heterologous minor pilins complemented twitching motility to various extents except in the case of PilX, which was non‐functional in non‐native backgrounds. A recombinant PA14 strain expressing the PAO1 minor pilins regained motility only upon co‐introduction of the PA14 pilX gene. Comparison of PilX and PilQ secretin sequences from group II, III and V genomes revealed discrete regions of sequence that co‐varied between groups. Our data suggest that changes in PilX sequence have led to compensatory changes in the PilQ secretin monomer such that heterologous PilX proteins are no longer able to promote opening of the secretin to allow pili to appear on the cell surface.  相似文献   

14.

Type IV pilus (T4P) is widespread in bacteria, yet its biogenesis mechanism and functionality is only partially elucidated in a limited number of bacterial species. Here, by using strain OH11 as the model organism, we reported the identification of 26 T4P structural or functional component (SFC) proteins in the Gram-negative Lysobacter enzymogenes, which is a biocontrol agent potentially exploiting T4P-mediated twitching motility for antifungal activity. Twenty such SFC coding genes were individually knocked-out in-frame to create a T4P SFC deletion library. By using combined phenotypic and genetic approaches, we found that 14 such SFCs, which were expressed from four operons, were essential for twitching motility. These SFCs included the minor pilins (PilEi, PilXi, PilVi, and FimTi), the anti-retraction protein PilY1i, the platform protein PilC, the extension/extraction ATPases (PilB, PilT, and PilU), and the PilMNOPQ complex. Among these, mutation of pilT or pilU caused a hyper piliation, while the remaining 12 SFCs were indispensable for pilus formation. Ten (FimTi, PilY1i, PilB, PilT, PilU, and the PilMNOPQ complex) of the 14 SFC proteins, as well as PilA, were further shown to play a key role in L. enzymogenes biofilm formation. Overall, our results provide the first report to dissect the genetic basis of T4P biogenesis and its role in biofilm formation in L. enzymogenes in detail, which can serve as an alternative platform for studying T4P biogenesis and its antifungal function.

  相似文献   

15.
Pigmentation in mammals is important for protection of skin and eyes from ultraviolet radiation. Dysregulation of pigmentation is often associated with other conditions that are not directly linked to pigmentation. Here, we isolated spontaneously occurring hypopigmented mice that occasionally experienced severe diarrhea during lactation. Treatment of these mice with dextran sulfate sodium salt, a conventional method to induce acute colitis, caused chronic diarrhea with granulomatous colitis. Gene mapping and sequencing revealed that the mice had a nonsense mutation in the Hermansky–Pudlak syndrome (Hps)5 gene. As some HPS patients can develop granulomatous colitis, the simple induction of chronic colitis in spontaneously mutated Hps5‐deficient mice may become an invaluable model for exploring treatment options in patients with HPS as well as other patients with inflammatory bowel disease.  相似文献   

16.
17.
Many bacterial pathogens produce a class of surface structures called type 4 fimbriae. In Pseudomonas aeruginosa these fimbriae are responsible for adhesion and translocation across host epithelial surfaces. We have identified a novel gene involved in the complex process of type 4 fimbrial biogenesis. This gene, termed pilF, is located on SpeI fragment S at 30 min on the P. aeruginosa genomic map, which is the sixth region on the chromosome shown to contain a fimbrial-associated gene. The PilF protein has a predicted Mr of 22 402, and together with a highly homologous upstream ORF shares a chromosomal arrangement similar to that found in Haemophilus influenzae. A pilF mutant is blocked in the export/assembly of the fimbrial subunit PilA, and accumulates this protein in the membrane fraction. Complementation studies indicate that the cloned pilF gene is able to restore the expression of surface fimbriae, twitching motility and susceptibility to fimbrial-specific bacteriophage  相似文献   

18.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous inherited disease causing hypopigmentation and prolonged bleeding times. An additional serious clinical problem of HPS is the development of lung pathology, which may lead to severe lung disease and premature death. No cure for the disease exists, and previously, no animal model for the HPS lung abnormalities has been reported. A mouse model of HPS, which is homozygously recessive for both the Hps1 (pale ear) and Hps2 (pearl) genes, exhibits striking abnormalities of lung type II cells. Type II cells and lamellar bodies of this mutant are greatly enlarged, and the lamellar bodies are engorged with surfactant. Mutant lungs accumulate excessive autofluorescent pigment. The air spaces of mutant lungs contain age-related elevations of inflammatory cells and foamy macrophages. In vivo measurement of lung hysteresivity demonstrated aberrant lung function in mutant mice. All these features are similar to the lung pathology described in HPS patients. Morphometry of mutant lungs indicates a significant emphysema. These mutant mice provide a model to further investigate the lung pathology and therapy of HPS. We hypothesize that abnormal type II cell lamellar body structure/function may predict future lung pathology in HPS.  相似文献   

19.
The phylum Bacteroidetes is large and diverse, with rapid gliding motility and the ability to digest macromolecules associated with many genera and species. Recently, a novel protein secretion system, the Por secretion system (PorSS), was identified in two members of the phylum, the gliding bacterium Flavobacterium johnsoniae and the nonmotile oral pathogen Porphyromonas gingivalis. The components of the PorSS are not similar in sequence to those of other well-studied bacterial secretion systems. The F. johnsoniae PorSS genes are a subset of the gliding motility genes, suggesting a role for the secretion system in motility. The F. johnsoniae PorSS is needed for assembly of the gliding motility apparatus and for secretion of a chitinase, and the P. gingivalis PorSS is involved in secretion of gingipain protease virulence factors. Comparative analysis of 37 genomes of members of the phylum Bacteroidetes revealed the widespread occurrence of gliding motility genes and PorSS genes. Genes associated with other bacterial protein secretion systems were less common. The results suggest that gliding motility is more common than previously reported. Microscopic observations confirmed that organisms previously described as nonmotile, including Croceibacter atlanticus, “Gramella forsetii,” Paludibacter propionicigenes, Riemerella anatipestifer, and Robiginitalea biformata, exhibit gliding motility. Three genes (gldA, gldF, and gldG) that encode an apparent ATP-binding cassette transporter required for F. johnsoniae gliding were absent from two related gliding bacteria, suggesting that the transporter may not be central to gliding motility.  相似文献   

20.
The type II secretion system (T2SS) exports folded proteins from the periplasms of Gram‐negative bacteria. The type IV pilus system (T4PS) is a multifunctional machine used for adherence, motility and DNA transfer in bacteria and archaea. Partial sequence identity between the two systems suggests that they are related and might function via a similar mechanism, the dynamic assembly and disassembly of pseudopilus (T2SS) or pilus (T4PS) filaments. The major subunit in each system is thought to form the bulk of the (pseudo)pilus, while minor (low‐abundance) subunits have proposed roles in assembly initiation, antagonism of disassembly, or modulation of (pseudo)pilus functional properties. In this issue, Cisneros et al. ( 2012 ) extend their previous finding that pseudopilus assembly is primed by the minor pseudopilins, showing that the same proteins can initiate assembly of Escherichia coli T4P. Similarly, they show that the E. coli minor pilins prime the polymerization of T2S pseudopili, although unlike genuine pseudopili, the chimeric filaments did not support secretion. This work reinforces the notion of a common assembly mechanism for the T2S and T4P systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号