首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
对紫花含笑(Michelia crassipes)、灰岩含笑(M.calcicola)及其杂种F1代花粉生活力进行了研究,为基于紫花含笑和灰岩含笑杂种F1代的含笑属观赏植物新品种培育与种质创新提供科学数据及研究资料.研究发现,亲本(紫花含笑和灰岩含笑)新鲜花粉萌发率均可达90%以上,杂种F1代花粉萌发率从38%到79%不等,平均为57.7%,低于双亲.亲本及其杂种F1代花粉萌发的最适温度为25℃,温度过高花粉管的伸长受到抑制,并导致花粉管顶端破裂.亲本及多数杂种F1代的新鲜花粉在100 g/L和150 g/L的蔗糖浓度下萌发率都较高;经-20℃贮藏后的花粉对蔗糖浓度的敏感性要高于新鲜花粉.杂种F1代及其亲本的花粉在离体培养中均会出现双萌发管现象.番红染料对液体培养基中的花粉有致死和染色作用,有利于统计杂种F1代及其亲本的花粉萌发率.  相似文献   

2.
In future climates, rice could more frequently be subjected to simultaneous high temperature and water stress during sensitive developmental stages such as flowering. In this study, five rice genotypes were exposed to high temperature, water stress and combined high temperature and water stress during flowering to quantify their response through spikelet fertility. Microscopic analyses revealed significant differences in anther dehiscence between treatments and genotypes, with a moderately high association with the number of germinated pollen grains on the stigma. There was a strong relationship between spikelet fertility and the number of germinated pollen on stigmas. Although, all three stress treatments resulted in spikelet sterility, high-temperature stress caused the highest sterility in all five genotypes. A cumulative linear decline in spikelet fertility with increasing duration of independent high-temperature stress and in combination with water stress was quantified. Better anther dehiscence, higher in vivo pollen germination, and higher spikelet fertility were observed in both the N22 accessions compared with IR64, Apo and Moroberekan under high temperature, water stress and combined stress, indicating its ability to tolerate multiple abiotic stresses.  相似文献   

3.
In order to explore the possible physiological mechanism of high temperature induced sterility in rice, we examined the floret sterility and endogenous plant growth regulator contents in pollens of two hybrid rice cultivars Shanyou63 and Teyou559 that are tolerant and susceptible to high temperature, respectively. Indexes of floret sterility, pollen activity, and variation of endogenous indole-3-acetic acid (IAA), gibberellic acids (GAs), abscisic acid (ABA), free proline and soluble proteins in anthers were measured. We found that during the course of high temperature treatment, both cultivars exhibited a marked decrease in pollen activity, pollen germination and floret fertility; however, the high temperature tolerant Shanyou63 showed a much slower rate of decrease than the high temperature susceptible Teyou559. In addition, anthers of both cultivars displayed a decrease in the contents of IAA, GAs, free proline and soluble proteins but an increase in the ABA content. Yet compared to Teyou559, Shanyou63 retained significantly higher levels of free praline and GAs and a lower level of ABA, along with higher pollen vigour and pollen germination rate even after prolonged high temperature treatment. Our study suggests a possible correlation between pollen viability/floret sterility and high temperature-caused changes in IAA, GAs, ABA, free proline and soluble protein contents. The severity in these changes may reflect the variation of rice cultivars in their heat stress sensitivities for floret development.  相似文献   

4.
With radical global climate change and global warming, high temperature stress has become one of major factors exerting a major influence on crop production. In the cotton (Gossypium hirsutum L.)-growing areas of China, especially in the Yangtze River valley, unexpected periodic episodes of extreme heat stress usually occur in July and August, the peak time of cotton flowering and boll loading, resulting in lower boll set and lint yield. Breeding programs for screening high temperature-tolerant cotton germplasm and cultivars are urgent in order to stabilize yield in the current and future warmer weather conditions. In the present study, 14 cotton cultivars were quantified for in vitro pollen germination and pollen tube growth in response to temperatures ranging from 10 to 50 ℃ at 5 ℃ intervals. Different cotton genotypes varied in their in vitro pollen germination and pollen tube length responses to the different temperatures. Maximum pollen germination and pollen tube length ranged from 25.2% to 56.2% and from 414 to 682 μm, respectively.The average cardinal temperatures (Tmin, Topt, and Tmax) also varied among the 14 cultivars and were 11.8,27.3, and 42.7 ℃ for pollen germination and 11.8, 27.8, and 44.1 ℃ for maximum pollen tube length. Variations in boll retention and boll numbers per plant in field experiments were found for the 14 cotton cultivars and the boll retention and boll retained per plant on 20 August varied considerably in different years according to weather conditions. Boll retention on 20 August was highly correlated with maximum pollen germination (R2=0.84) and pollen tube length (R2=0.64). A screening method based on principle component analysis of the combination of pollen characteristics in an in vitro experiment and boll retention testing in the field environment was used in the present study and, as a result, the 14 cotton cultivars could be classified as tolerant, moderately tolerant, moderately susceptible and susceptible to high temperature.  相似文献   

5.
东方百合花粉萌发培养基组分的优化   总被引:30,自引:0,他引:30  
以东方百合6个品种的花粉作实验材料,选用22个培养基配方,在研究硼酸和蔗糖浓度对花粉萌发和花粉管伸长影响的基础上,对东方百合花粉培养基配方进行了优化。研究结果表明东方百合离体花粉萌发培养基的最佳组成是:蔗糖13%,硼酸143mg·kg-1,琼脂1%。  相似文献   

6.
梅花花粉离体萌发和花粉管生长研究   总被引:10,自引:1,他引:9  
赵宏波  房伟民  陈发棣   《广西植物》2007,27(3):393-396,425
(南京农业大学园艺学院,南京210095)摘要:研究培养基成分、pH值和培养方式对梅花花粉离体萌发和花粉管生长的影响。结果表明:不同品种梅花花粉离体萌发的最适培养基为ME3+200g.L-1PEG4000(pH5.0),品种‘淡丰后’、‘久观绿萼’、‘喧妍宫粉’和‘月光玉蝶’最高萌发率可分别达到58.6%、60.6%、85.6%和50.7%。PEG4000能显著促进梅花花粉萌发,在培养基各成分中作用最大,不可替代。低浓度(50g.L-1)蔗糖对梅花品种花粉萌发作用不显著,而高浓度(≥100g.L-1)蔗糖明显抑制花粉萌发和花粉管生长。固体和液体培养对梅花花粉离体萌发的影响差异不显著。  相似文献   

7.
In sorghum (Sorghum bicolor [L.] Moench), the impact of heat stress during flowering on seed set is known, but mechanisms that lead to tolerance are not known. A diverse set of sorghum genotypes was tested under controlled environment and field conditions to ascertain the impact of heat stress on time-of-day of flowering, pollen viability, and ovarian tissue. A highly conserved early morning flowering was observed, wherein >90% of spikelets completed flowering within 30 min after dawn, both in inbreds and hybrids. A strong quantitative impact of heat stress was recorded before pollination (reduced pollen viability) and post pollination (reduced pollen tube growth and linear decline in fertility). Although viable pollen tube did reach the micropylar region, 100% spikelet sterility was recorded under 40/22°C (day/night temperatures), even in the tolerant genotype Macia. Heat stress induced significant damage to the ovarian tissue near the micropylar region, leading to highly condensed cytoplasmic contents and disintegrated nucleolus and nucleus in the susceptible genotype RTx430. Whereas, relatively less damages to ovarian cell organelles were observed in the tolerant genotype Macia under heat stress. Integrating higher tolerance in female reproductive organ will help in effective utilization of the early morning flowering mechanism to enhance sorghum productivity under current and future hotter climate.  相似文献   

8.
Pea (Pisum sativum L.) is a major legume crop grown in a semi‐arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed–ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control‐treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid‐infrared attenuated total reflectance (MIR‐ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar.  相似文献   

9.
本文从颖花发育的形态学和生理学角度,综述了水稻穗分化期至抽穗开花期非生物胁迫导致颖花不育的机理,旨在揭示非生物胁迫导致水稻颖花败育的关键过程及其内在联系.颖花是否可育主要与绒毡层细胞行为、花药开裂与散粉、花粉萌发、受精4个关键过程有关,胁迫通过影响这些关键过程,导致颖花不育.花药发育早期异常变化影响生殖细胞发育与授粉作用.可以通过喷施外源物质或增施硅肥等方法减缓非生物胁迫对颖花育性的伤害.今后需要加强交叉胁迫对颖花育性的影响、不同胁迫对花器官形态结构和生理特性的影响、不同水稻品种对胁迫的响应差异,以及胁迫影响花器官发育的分子生物学机制等方面的研究.  相似文献   

10.
High‐temperature during flowering in rice causes spikelet sterility and is a major threat to rice productivity in tropical and subtropical regions, where hybrid rice development is increasingly contributing to sustain food security. However, the sensitivity of hybrids to increasing temperature and physiological responses in terms of dynamic fertilization processes is unknown. To address these questions, several promising hybrids and inbreds were exposed to control temperature and high day‐time temperature (HDT) in Experiment 1, and hybrids having contrasting heat tolerance were selected for Experiment 2 for further physiological investigation under HDT and high‐night‐time‐temperature treatments. The day‐time temperature played a dominant role in determining spikelet fertility compared with the night‐time temperature. HDT significantly induced spikelet sterility in tested hybrids, and hybrids had higher heat susceptibility than the high‐yielding inbred varieties. Poor pollen germination was strongly associated with sterility under high‐temperature. Our novel observations capturing the series of dynamic fertilization processes demonstrated that pollen tubes not reaching the viable embryo sac was the major cause for spikelet sterility under heat exposure. Our findings highlight the urgent need to improve heat tolerance in hybrids and incorporating early‐morning flowering as a promising trait for mitigating HDT stress impact at flowering.  相似文献   

11.
Heat stress at the pollen mother cell (PMC) meiotic stage leads to pollen sterility in rice, in which the reactive oxygen species (ROS) and sugar homeostasis are always adversely affected. This damage is reversed by abscisic acid (ABA), but the mechanisms underlying the interactions among the ABA, sugar metabolism, ROS and heat shock proteins in rice spikelets under heat stress are unclear. Two rice genotypes, Zhefu802 (a recurrent parent) and fgl (its near‐isogenic line) were subjected to heat stress of 40°C after pre‐foliage sprayed with ABA and its biosynthetic inhibitor fluridone at the meiotic stage of PMC. The results revealed that exogenous application of ABA reduced pollen sterility caused by heat stress. This was achieved through various means, including: increased levels of soluble sugars, starch and non‐structural carbohydrates, markedly higher relative expression levels of heat shock proteins (HSP24.1 and HSP71.1) and genes related to sugar metabolism and transport, such as sucrose transporters (SUT) genes, sucrose synthase (SUS) genes and invertase (INV) genes as well as increased antioxidant activities and increased content of adenosine triphosphate and endogenous ABA in spikelets. In short, exogenous application of ABA prior to heat stress enhanced sucrose transport and accelerated sucrose metabolism to maintain the carbon balance and energy homeostasis, thus ABA contributed to heat tolerance in rice.  相似文献   

12.
The pollens of apple flowers have been treated with simulated acid rain solutions in range of pHs 2.9 to 5.0 in order to determine the threshold proportion values that lead the observed symptoms of detriments of acid rain. Compared to controls (pH 6.5), pollen germination decreased by 41.75% at pH 3.3 and pollen tube elongation decreased by 24.3% at pH 3.4. Acid rain threshold proportion value was around pH 3.3 and 3.4 for apple pollen germination and pollen tube elongation, respectively. Furthermore, pollen tube elongation was determined to be more sensitive to acid rain than pollen germination. The pH values below 3.1 resulted in complete destruction of pollen tubes. Pollen germination entirely stopped at around pH 3.0. Finally, it has been shown that the acid rain has a blocking effect on pollen germination and pollen tube elongation in apple. The conclusion is that not only pH value but also the quantity of acid rain is important factor in germination. The results were found statistically significant through the LSD test at levels of p < 0.05 and p < 0.01.  相似文献   

13.
Pollen viability and germination are known to be sensitive to high temperature (HT). However, the mode by which high temperature impairs pollen functioning is not yet clear. In the present study, we investigated the effect of high temperature on changes occurring in carbohydrate of bell pepper (Capsicum annuum L. cv. Mazurka) pollen in order to find possible relations between these changes and pollen germination under heat stress. When pepper plants were maintained under a moderate HT regime (32/26 degrees C, day/night) for 8 days before flowers have reached anthesis, pollen count at anthesis was similar to that found in plants grown under normal temperatures (NT 28/22 degrees C). However, the in vitro germination, carried out at 25 degrees C, of pollen from HT plants was greatly reduced. This effect matched the marked reduction in the number of seeds per fruit in the HT plants. Maintaining the plants at high air CO2 concentration (800 &mgr;mol mol-1 air) in both temperature treatments did not affect the in vitro germination of pollen from NT plants, but restored germination to near the normal level in pollen from HT plants. Under NT conditions, starch, which was negligible in pollen at meiosis (8 days before anthesis, A-8) started to accumulate at A-4 and continued to accumulate until A-2. From that stage until anthesis, starch was rapidly degraded. On the other hand, sucrose concentration rose from stage A-4 until anthesis. Acid invertase (EC 3.2.1.26) activity rose parallel with the increase of sucrose. In pollen from HT plants, sucrose and starch concentrations were significantly higher at A-1 pollen than in that of NT plants. Under high CO2 conditions, the sucrose concentration in the pollen of HT plants was reduced to levels similar to those in NT pollen. In accordance with the higher sucrose concentration in HT pollen, the acid invertase activity in these pollen grains was lower than in NT pollen. The results suggest that the higher concentrations of sucrose and starch in the pollen grains of HT plants may result from reduction in their metabolism under heat stress. Elevated CO2 concentration, presumably by increasing assimilate availability to the pollen grain, may alleviate the inhibition of sucrose and starch metabolism, thereby increasing their utilization for pollen germination under the HT stress. Acid invertase may have a regulatory role in this system.  相似文献   

14.
The predicted increase in the frequency and magnitude of extreme heat spikes under future climate can reduce rice yields significantly. Rice sensitivity to high temperatures during the reproductive stage is well documented while the same during the vegetative stage is more speculative. Hence, to identify and characterize novel heat‐tolerant donors for both the vegetative and reproductive stages, 71 rice accessions, including approximately 75% New Rice for Africa (NERICAs), were phenotyped across field experiments during summer seasons in Delhi, India, and in a controlled environment study at International Rice Research Institute , Philippines. NERICA‐L‐44 (NL‐44) recorded high seedling survival (52%) and superior growth and greater reproductive success exposed to 42.2°C (sd ± 2.3) under field conditions. NL‐44 and the heat‐tolerant check N22 consistently displayed lower membrane damage and higher antioxidant enzymes activity across leaves and spikelets. NL‐44 recorded 50–60% spikelet fertility, while N22 recorded 67–79% under controlled environment temperature of 38°C (sd ±1.17), although both had about 87% fertility under extremely hot field conditions. N22 and NL‐44, exposed to heat stress (38°C), had similar pollen germination percent and number of pollen tubes reaching the ovary. NL‐44 maintained low hydrogen peroxide production and non‐photochemical quenching (NPQ) with high photosynthesis while N22 avoided photosystem II damage through high NPQ under high‐temperature stress. NL‐44 with its reproductive stage resilience to extreme heat stress, better antioxidant scavenging ability in both vegetative tissue and spikelets and superior yield and grain quality is identified as a novel donor for increasing heat tolerance at both the vegetative and reproductive stages in rice.  相似文献   

15.
* BACKGROUND AND AIMS: High-temperature environments with >30 degrees C during flowering reduce boll retention and yield in cotton. Therefore, identification of cotton cultivars with high-temperature tolerance would be beneficial in both current and future climates. * METHODS: Response to temperature (10-45 degrees C at 5 degrees C intervals) of pollen germination and pollen tube growth was quantified, and their relationship to cell membrane thermostability was studied in 12 cultivars. A principal component analysis was carried out to classify the genotypes for temperature tolerance. * KEY RESULTS: Pollen germination and pollen tube length of the cultivars ranged from 20 to 60 % and 411 to 903 microm, respectively. A modified bilinear model best described the response to temperature of pollen germination and pollen tube length. Cultivar variation existed for cardinal temperatures (T(min), T(opt) and T(max)) of pollen germination percentage and pollen tube growth. Mean cardinal temperatures calculated from the bilinear model for the 12 cultivars were 15.0, 31.8 and 43.3 degrees C for pollen germination and 11.9, 28.6 and 42.9 degrees C for pollen tube length. No significant correlations were found between pollen parameters and leaf membrane thermostability. Cultivars were classified into four groups based on principal component analysis. * CONCLUSIONS: Based on principal component analysis, it is concluded that higher pollen germination percentages and longer pollen tubes under optimum conditions and with optimum temperatures above 32 degrees C for pollen germination would indicate tolerance to high temperature.  相似文献   

16.
Ripe pollen has different soluble and insoluble carbohydrates in variable amounts. Pollen germination and pollen tube growth were studied in a tomato cultivar (Solanum lycopersicum L. cv. Platense) with atypical pollen among tomatoes due to its very low amount or absence of sucrose. In vitro assays were performed using a culture medium without carbohydrates to explore whether there is an autotrophic phase of pollen tube growth, and if there is, describe it, and to analyze the fluctuations of endogenous carbohydrates (soluble carbohydrates, starch, pectins, and callose). Pollen germination was fast (ca. 10 min) and a definite autotrophic phase was observed. Soluble carbohydrates and pectins showed the most substantial changes during this period, even after 10 min. A small amount of callose was observed in the ripe pollen and pollen tubes. Pectins were the most abundant pollen tube wall component. Pollen can be considered starchless; starch was not involved in the autotrophic phase of growth. Other types of substances must be connected with the carbohydrate metabolism, because the fluctuations of the different substances did not follow balanced stoichiometric relationships. Pollen germination and pollen tube elongation was sustained autotrophically, even though sucrose was absent and starch was negligible in pollen grains. The type of pollen reserves and the fast pollen tube formation could be selective advantages in this cultivar.  相似文献   

17.
Pollen was collected from ten cultivars of Juglans regia and three cultivars of the later-blooming species, J. nigra. Extensive phenological data were available for these cultivars. Cultivars were chosen on the basis of staminate bloom date to include the earliest and latest blooming individuals available and a representative range throughout the bloom season. Mean staminate bloom dates for the cultivars examined covered a period of 46 days over which time mean daily temperatures rose 6 C. In order to determine if adaptations to temperature were expressed by the gametophyte generation, pollen was subjected to controlled temperatures from 5 to 40 C in 2 to 4 C increments and analyzed for germination percentages and pollen tube elongation. A positive relationship was found for pollen germination percentage and mean staminate bloom date such that earlier blooming individuals showed lower minimum temperature thresholds for germination, and optimum temperature for pollen germination was positively correlated with mean staminate bloom date. Differences in pollen tube growth, determined separately from hydration and germination responses, were less clear. Most J. regia clones had lower minium temperature thresholds for growth than the J. nigra clones, but there was no clear relationship to earliness of bloom within the species. No differences were discerned in optimum temperatures for pollen tube growth either between the two species or within species.  相似文献   

18.
19.
20.
Does aluminum inhibit pollen germination via extracellular calmodulin?   总被引:4,自引:0,他引:4  
The effect of aluminum (Al) on pollen germination and its mechanism of action were investigated. Pollen germination and pollen tube elongation were inhibited by Al at pH 4.5. This inhibitory effect was reversed by the addition of purified calmodulin (CaM), whereas neither the calcium binding-protein S-100 nor Al chelator citric acid at the same concentrations had any obvious effect on Al-inhibited pollen germination. The presence of either the membrane-impermeable CaM inhibitor anti-CaM antiserum or Ca2+ chelator EGTA completely suppressed the effect of exogenous CaM. These results indicate the involvement of extracellular calmodulin in the short-term effects of Al on pollen germination and pollen tube elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号