首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
Pigs are a food-producing species that readily carry Salmonella but, in the great majority of cases, do not show clinical signs of disease. Little is known about the functions required by Salmonella to be maintained in pigs. We have devised a recombinase-based promoter-trapping strategy to identify genes with elevated expression during pig infection with Salmonella enterica serovar Typhimurium. A total of 55 clones with in vivo-induced promoters were selected from a genomic library of ~10,000 random Salmonella DNA fragments fused to the recombinase cre, and the cloned DNA fragments were analyzed by sequencing. Thirty-one genes encoding proteins involved in bacterial adhesion and colonization (including bcfA, hscA, rffG, and yciR), virulence (metL), heat shock (hscA), and a sensor of a two-component regulator (hydH) were identified. Among the 55 clones, 19 were isolated from both the tonsils and the intestine, while 23 were identified only in the intestine and 13 only in tonsils. High temperature and increased osmolarity were identified as environmental signals that induced in vivo-expressed genes, suggesting possible signals for expression.  相似文献   

5.
The gram-positive bacterial species Clavibacter capsici causes necrosis and canker in pepper plants. Genomic and functional analyses of C. capsici type strain PF008 have shown that multiple virulence genes exist in its two plasmids. We aimed to identify the key determinants that control the virulence of C. capsici. Pepper leaves inoculated with 54 natural isolates exhibited significant variation in the necrosis. Six isolates showed very low virulence, but their population titres in plants were not significantly different from those of the highly virulent isolates. All six isolates lacked the pCM1Cc plasmid that carries chpG, which has been shown to be required for virulence and encodes a putative serine protease, but two of them, isolates 1,106 and 1,207, had the intact chpG elsewhere in the genome. Genomic analysis of these two isolates revealed that chpG was located in the pCM2Cc plasmid, and two highly homologous regions were present next to the chpG locus. The chpG expression in isolate 1,106 was not induced in plants. Introduction of chpG of the PF008 strain into the six low-virulence isolates restored their virulence to that of PF008. Our findings indicate that there are at least three different variant groups of C. capsici and that the plasmid composition and the chpG gene are critical for determining the virulence level. Moreover, our findings also indicate that the virulence level of C. capsici does not directly correlate with bacterial titres in plants.  相似文献   

6.

Background  

Cysteine has a crucial role in cellular physiology and its synthesis is tightly controlled due to its reactivity. However, little is known about the sulfur metabolism and its regulation in clostridia compared with other firmicutes. In Clostridium perfringens, the two-component system, VirR/VirS, controls the expression of the ubiG operon involved in methionine to cysteine conversion in addition to the expression of several toxin genes. The existence of links between the C. perfringens virulence regulon and sulfur metabolism prompted us to analyze this metabolism in more detail.  相似文献   

7.
Expression of capsule-associated genes of Cryptococcus neoformans   总被引:2,自引:0,他引:2  
Cryptococcus neoformans produces an extracellular polysaccharide capsule that is related to its virulence. The production of capsular components was reported to be accelerated when cultured on media with lower amount of glucose. In this study, relationship between capsule synthesis and expression of capsule-associated genes (CAP genes) was investigated by quantitative real-time PCR analysis. Normally encapsulated strains and a stable acapsular strain were cultured in 1% polypepton medium with 0.1% or 15% glucose. The results of assessment of the capsule size showed that the capsule of yeast cells cultured in the medium with low amount of glucose was thicker than that with high amount of glucose. The CAP gene expressions of normally encapsulated strains were higher in the medium with 0.1% glucose than in the medium with 15% glucose. Furthermore, CAP10, CAP59 and CAP60 genes were expressed very low in a stable acapsular strain, and CAP64 gene was not expressed. Results of assessment of capsule size and CAP gene expressions by quantitative real-time PCR analysis indicated that CAP gene expressions might be related to the production of capsule, and that glucose concentration in culture media might be related to the expression of CAP genes.  相似文献   

8.
9.
The polysaccharide β‐1,6‐glucan is a major component of the cell wall of Cryptococcus neoformans, but its function has not been investigated in this fungal pathogen. We have identified and characterized seven genes, belonging to the KRE family, which are putatively involved in β‐1,6‐glucan synthesis. The H99 deletion mutants kre5Δ and kre6Δskn1Δ contained less cell wall β‐1,6‐glucan, grew slowly with an aberrant morphology, were highly sensitive to environmental and chemical stress and were avirulent in a mouse inhalation model of infection. These two mutants displayed alterations in cell wall chitosan and the exopolysaccharide capsule, a primary cryptococcal virulence determinant. The cell wall content of the GPI‐anchored phospholipase B1 (Plb1) enzyme, which is required for cryptococcal cell wall integrity and virulence, was reduced in kre5Δ and kre6Δskn1Δ. Our results indicate that KRE5, KRE6 and SKN1 are involved in β‐1,6‐glucan synthesis, maintenance of cell wall integrity and retention of mannoproteins and known cryptococcal virulence factors in the cell wall of C. neoformans. This study sets the stage for future investigations into the function of this abundant cell wall polymer.  相似文献   

10.
In this study, we investigated the antimicrobial susceptibility profiles and the distribution of some well known genetic determinants of virulence in clinical isolates of Salmonella enterica from New Mexico. The minimum inhibitory concentrations for various antimicrobials were determined by using the E-test strip method according to CLSI guidelines. Virulence genotyping was performed by polymerase chain reaction (PCR) using primers specific for known virulence genes of S. enterica. Of 15 isolates belonging to 11 different serovars analyzed, one isolate of Salmonella Typhimurium was resistant to multiple drugs namely ampicillin, amoxicillin/clavulanic acid, chloramphenicol and tetracycline, that also harbored class 1 intergron, bla TEM encoding genes for β-lactamase, chloramphenicol acetyl transferase (cat1), plus floR, tet(C) and tet(G). This strain was phage typed as DT104. PCR analysis revealed the presence of invA, hilA, stn, agfA and spvR virulence genes in all the isolates tested. The plasmid-borne pefA gene was absent in 11 isolates, while 5 isolates lacked sopE. One isolate belonging to serogroup E4 (Salmonella Sombre) was devoid of multiple virulence genes pefA, iroB, shdA and sopE. These results demonstrate that clinical Salmonella serotypes from New Mexico used here are predominantly sensitive to multiple antimicrobial agents, but vary in their virulence genotypes. Information on antimicrobial sensitivity and virulence genotypes will help in understanding the evolution and spread of epidemic strains of S. enterica in the region of study.  相似文献   

11.
Mesorhizobium tianshanense is a nitrogen-fixing bacterium that can establish symbiotic associations with Glycyrrhiza uralensis in the form of root nodules. Nodule formation in rhizobia often requires various secreted carbohydrates. To investigate exopolysaccharide (EPS) production and function in M. tianshanense, we performed a genome-wide screen using transposon mutagenesis to identify genes involved in EPS production. We identified seven mutants that produced significantly lower amounts of EPS as well as a two-component sensor kinase/response regulator system that is involved in the activation of EPS synthesis. EPS mutants formed significantly less biofilm and displayed severely reduced nodulation capacity than wild type bacteria, suggesting that EPS synthesis can play important roles in the symbiosis process. Peng Wang, Zengtao Zhong and Jing Zhou have contributed equally to this work.  相似文献   

12.
13.
The pathogenic fungus Cryptococcus neoformans delivers virulence factors such as capsule polysaccharide to the cell surface to cause disease in vertebrate hosts. In this study, we screened for mutants sensitive to the secretion inhibitor brefeldin A to identify secretory pathway components that contribute to virulence. We identified an ortholog of the cell division control protein 50 (Cdc50) family of the noncatalytic subunit of type IV P‐type ATPases (flippases) that establish phospholipid asymmetry in membranes and function in vesicle‐mediated trafficking. We found that a cdc50 mutant in Cneoformans was defective for survival in macrophages, attenuated for virulence in mice and impaired in iron acquisition. The mutant also showed increased sensitivity to drugs associated with phospholipid metabolism (cinnamycin and miltefosine), the antifungal drug fluconazole and curcumin, an iron chelator that accumulates in the endoplasmic reticulum. Cdc50 is expected to function with catalytic subunits of flippases, and we previously documented the involvement of the flippase aminophospholipid translocases (Apt1) in virulence factor delivery. A comparison of phenotypes with mutants defective in genes encoding candidate flippases (designated APT1, APT2, APT3, and APT4) revealed similarities primarily between cdc50 and apt1 suggesting a potential functional interaction. Overall, these results highlight the importance of membrane composition and homeostasis for the ability of Cneoformans to cause disease.  相似文献   

14.
15.
16.
The first genome sequence of a group A Streptococcus pyogenes serotype M23 (emm23) strain (M23ND), isolated from an invasive human infection, has been completed. The genome of this opacity factor-negative (SOF) strain is composed of a circular chromosome of 1,846,477 bp. Gene profiling showed that this strain contained six phage-encoded and 24 chromosomally inherited well-known virulence factors, as well as 11 pseudogenes. The bacterium has acquired four large prophage elements, ΦM23ND.1 to ΦM23ND.4, harboring genes encoding streptococcal superantigen (ssa), streptococcal pyrogenic exotoxins (speC, speH, and speI), and DNases (spd1 and spd3), with phage integrase genes being present at one flank of each phage insertion, suggesting that the phages were integrated by horizontal gene transfer. Comparative analyses revealed unique large-scale genomic rearrangements that result in genomic rearrangements that differ from those of previously sequenced GAS strains. These rearrangements resulted in an imbalanced genomic architecture and translocations of chromosomal virulence genes. The covS sensor in M23ND was identified as a pseudogene, resulting in the attenuation of speB function and increased expression of the genes for the chromosomal virulence factors multiple-gene activator (mga), M protein (emm23), C5a peptidase (scpA), fibronectin-binding proteins (sfbI and fbp54), streptolysin O (slo), hyaluronic acid capsule (hasA), streptokinase (ska), and DNases (spd and spd3), which were verified by PCR. These genes are responsible for facilitating host epithelial cell binding and and/or immune evasion, thus further contributing to the virulence of M23ND. In conclusion, strain M23ND has become highly pathogenic as the result of a combination of multiple genetic factors, particularly gene composition and mutations, prophage integrations, unique genomic rearrangements, and regulated expression of critical virulence factors.  相似文献   

17.
The tolQRABpal cluster of Escherichia coli K-12 encodes proteins involved in the maintenance of cell-envelope integrity. In addition, toi/pal mutations result in a mucoid colony phenotype at low temperature. The synthesis of capsular polysaccharides by the cps genes is controlled by the positive regulator RcsA and the two-component RcsC/RcsB system. It was shown that the mucoid phenotype of the tol/pal mutants was due to an rcsCB-dependent activation of the cps genes. Furthermore, we have identified a mutation in the rcsC gene that decreased the activity of a tolA-lac operon fusion independently of RcsA and partially independently of RcsB activators. The corresponding rcsC338 mutation resulted in a Glu to Lys substitution at residue 338 of RcsC. This mutation induced mucoidy even at high temperature. We propose that RcsC modulates the phosphorylated forms of RcsB and an uncharacterized regulatory protein involved in the control of the tolQRA genes in an opposite manner. Moreover, our findings strengthen the previous suggestion that RcsC senses some alterations in the cell surface such as those induced by tol, pal or rfa mutations, and activates capsule synthesis to protect the cell against deleterious agents.  相似文献   

18.
The contemporary races of Puccinia striiformis f. sp. tritici (Pst) in Egypt during 2016–2018 were differentiated based on virulence and molecular patterns. Virulence patterns based on the reaction of the 17 World/European differential sets carrying stripe rust resistance genes (Yr genes) resulted in ten races including four new (first recorded in Egypt) and six old (previously recorded in Egypt). The new races were identified as 64E0 (virulence [V] Yr4, Su), 0E16 (V Yr8, 19), 66E0 (V Yr4, 7, 22, 23, Su) and 4E130 (V Yr2, 6, 7, 25, HVII), while the old were 0E0 (avirulence), 2E0 (V Yr7, 22, 23), 2E16 (V Yr7, 8, 19, 22, 23), 4E0 (V Yr2, 6), 6E4 (V Yr2, 6, 7, 22, 23, 25) and 70E4 (V Yr2, 4, 6, 7, 22, 23, 25, Su). Cluster analysis differentiated Pst races based on virulence frequency to Yr genes. Simple sequence repeat (SSR) markers were used to detect the molecular polymorphism of the Pst races. Clustering separated the old and new races into two groups, indicating their common ancestry since the new races were very distinct from the old races. Although clustering based on virulence revealed some evolutionary patterns, where the new races 64E0 and 66E0 may have probably evolved from the old races (2E16, 2E0, 6E4, 70E4) and the new race 4E130 may be evolved from the joint race 4E0. However, clustering based on molecular patterns indicated that the new races appear to be genetically distinct and may represent an exotic introduction rather than a mutation in isolates of the old races. A weak association between virulence and molecular patterns revealed that they are independent of each other. The SSR markers did not correspond to the virulences in the pathogen. Further studies on the potential virulence genes of the detected Pst virulences are needed.  相似文献   

19.
20.
Using the method for the identification of promoters recognized by the sporulation specific σ factor (σF), we identified a positive 950 pbSau3Al DNA fragment inStreptomyces cœlicolor A3(2). High-resolution S1-nuclease mapping identified a potential promoter, PF35, in theE. coli two-plasmid system similar to the consensus sequence ofBacillus subtilis promoters recognized by the general stress-response σ factor (σB). However, the putativesigF-dependent promoter, PF35, was inactive inS. cœlicolor in the course of diffenentiation and it was located divergently in the promoter region directing expression of thechiC gene encoding chitinase. Sequence analysis of the region potentially governed by PF35 revealed two translationally coupled genes encoding proteins similar to bacterial two-component regulatory systems, and with the highest similarity to the two-component systemchiS, chiR, regulating chitinase activity inStreptomyces thermoviolaceus. However, the genes had a divergent orientation with respect to the PF35 promoter. Disruption of theS. cœlicolor chiR gene appeared to have no obvious effect on growth, morphology, differentiation, and production of pigmented antibiotic actinorhodin and undecylprodigiosin. Moreover, thechiR disruption did not affect the overall chitinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号