首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant plasma membrane-localized NADPH oxidases, known as respiratory burst oxidase homologues (RBOHs), appear to play crucial roles in plant growth and development. They are involved in important processes, such as root hair growth, plant defence reactions and abscisic acid signalling. Using sequence similarity searches, we identified seven putative RBOH-encoding genes in the Medicago truncatula genome. A phylogenetic reconstruction showed that Rboh gene duplications occurred in legume species. We analysed the expression of these MtRboh genes in different M. truncatula tissues: one of them, MtRbohA, was significantly up-regulated in Sinorhizobium meliloti-induced symbiotic nodules. MtRbohA expression appeared to be restricted to the nitrogen-fixing zone of the functional nodule. Moreover, using S. meliloti bacA and nifH mutants unable to form efficient nodules, a strong link between nodule nitrogen fixation and MtRbohA up-regulation was shown. MtRbohA expression was largely enhanced under hypoxic conditions. Specific RNA interference for MtRbohA provoked a decrease in the nodule nitrogen fixation activity and the modulation of genes encoding the microsymbiont nitrogenase. These results suggest that hypoxia, prevailing in the nodule-fixing zone, may drive the stimulation of MtRbohA expression, which would, in turn, lead to the regulation of nodule functioning.  相似文献   

2.
The effect of Zn fertilisation on tolerance of Medicago truncatula to infection by the root-rotting pathogen Rhizoctonia solani (AG 8) was studied in a field survey and in two experiments in controlled conditions. From the field survey, the concentration of Zn in the shoots of medics was found to be inversely related to the severity of disease on the root. Overall, the addition of Zn to Zn-deficient soil in controlled environment experiments resulted in reduced yield loss in the presence of R. solani, a reduction in disease score and no change in the concentration of nutrients in the shoots. However, under Zn deficiency, increasing levels of added R. solani resulted in significant yield loss, an increase in disease score and a reduction in concentration of Zn in the roots. This occurred despite a decrease in the number of infection sites caused by the fungus on the root and a lower amount of R. solani DNA extracted in medics deficient in Zn compared with plants supplied with Zn. While plants supplied with Zn were able to maintain a stable concentration of Zn in the shoots, the concentration of Zn in the roots also declined with increasing levels of R. solani. In conclusion, Zn application does not directly inhibit infection by R. solani, nor reduce its pathogenicity, but it does strongly increase root growth. The net result is that Zn-sufficient plants are more tolerant to the effects of root pruning by the fungus than Zn-deficient plants.  相似文献   

3.
两种秸秆醋液对尖孢镰刀菌和立枯丝核菌的抑菌作用   总被引:1,自引:0,他引:1  
本研究以玉米秸秆醋液、水稻秸秆醋液为供试材料,研究不同稀释度的秸秆醋液对尖孢镰刀菌(Fusarium oxysporum)和立枯丝核菌(Rhizoctonia solani)的抑制作用,测定其可溶性蛋白和可溶性糖。结果表明,50倍稀释液对2种病原菌的抑制率为100%,即2种病原菌在50倍稀释处理的秸秆醋液中不能生长。玉米秸秆醋液对尖孢镰刀菌中可溶性蛋白的影响不显著,对立枯丝核菌中可溶性蛋白的影响表现为先升高后降低。水稻秸秆醋液对尖孢镰刀菌中可溶性蛋白的影响是先升高后降低,对立枯丝核菌中可溶性蛋白的影响是逐渐累积。高浓度的水稻秸秆醋液可提高2种菌体内可溶性糖含量,100倍稀释的玉米秸秆醋液可提高尖孢镰刀菌体内的可溶糖含量,玉米秸秆醋液对立枯丝核菌的可溶性糖含量基本不会产生影响。本研究为秸秆醋液在农业生产上的推广应用等提供科学依据。  相似文献   

4.
In this study, the role of Brassinosteroids (BRs) and the relationship between the mitochondrial alternative oxidase (AOX) and ROS in the BR-induced defence response to salt stress was studied in mustard plants. Salt stress induced a significant activation of AOX. Exogenous BR significantly enhanced the capacity of the cyanide-resistant pathway, and reduced the damage of cell membrane. Pretreatment with brassinazole (Brz, an inhibitor of the BR biosynthesis pathway) significantly blocked the capacity of the cyanide-resistant pathway. BR could partly recover the AOX inactivation under salicylhydroxamic acid (SHAM, an inhibitor of the cyanide-resistant pathway) pretreatment. It was also found that BR could enhance the ROS accumulation and the antioxidant enzyme activities, while the AOX could eliminate the excessive ROS and enhance the antioxidant enzyme activities. Furthermore, the suppression of the cyanide-resistant pathway significantly increased the MDA content and the electrolyte leakage in mustard leaves, and the suppression of the BR biosynthesis had little effect on their recovering. Taken together, the cyanide-resistant pathway was involved in BR-induced salt tolerance and played an important role in maintaining the permeability of the cell membrane.  相似文献   

5.
6.
7.
Mitogen-activated kinase (MAPK) signalling pathways are involved in several important processes related to the development and virulence of Fusarium oxysporum. Reversible phosphorylation of the protein members of these pathways is a major regulator of essential biological processes. Among the phosphatases involved in dephosphorylation of MAPKs, type 2C protein phosphatases (PP2Cs) play important roles regulating many developmental strategies and stress responses in yeasts. Nevertheless, the PP2C family is poorly known in filamentous fungi. The F. oxysporum PP2C family includes seven proteins, but only Ptc1 has been studied so far. Here we show the involvement of Ptc6 in the stress response and virulence of F. oxysporum. Expression analysis revealed increased expression of ptc6 in response to cell wall and oxidative stresses. Additionally, targeted inactivation of ptc6 entailed enhanced susceptibility to cell wall stresses caused by Calcofluor White (CFW). We also demonstrate that the lack of Ptc6 deregulates both the Mpk1 phosphorylation induced by CFW and, more importantly, the Fmk1 dephosphorylation induced by pH acidification of the extracellular medium, indicating that Ptc6 is involved in the regulation of these MAPKs. Finally, we showed, for the first time, the involvement of a phosphatase in the invasive growth and virulence of F. oxysporum.  相似文献   

8.
In illuminated leaves, mitochondria are thought to play roles in optimizing photosynthesis. However, the roles of the cytochrome pathway (CP) and alternative oxidase (AOX) in photosynthesis, in particular in the redox state of the photosynthetic electron transport chain, are not separately characterized. We examined the effects of specific inhibition of two respiratory pathways, CP and AOX, on photosynthetic oxygen evolution and the redox state of the photosynthetic electron transport chain in broad bean (Vicia faba L.) leaves under various light intensities. Under saturating photosynthetic photon flux density (PPFD; 700 micromol photon m(-2) s(-1)), inhibition of either pathway caused a decrease in the steady-state levels of the photosynthetic O(2) evolution rate and the PSII operating efficiency, Phi(II). Because these inhibitors, at the concentrations applied to the leaves, had little effect on photosynthesis in the intact chloroplasts, two respiratory pathways are essential for maintenance of high photosynthetic rates at saturating PPFD. CP or AOX inhibition affected to Chl fluorescence parameters (e.g. photochemical quenching and non-photochemical quenching) differently, suggesting that CP and AOX contribute to photosynthesis in different ways. At low PPFD (100 micromol photon m(-2) s(-1)), only the inhibition of AOX, not CP, lowered the photosynthetic rate and Phi(II). AOX inhibition also decreased the Phi(II)/Phi(I) ratio even at low PPFD levels. These data suggest that AOX inhibition caused the over-reduction of the photosynthetic electron transport chain and induced the cyclic electron flow around PSI (CEF-PSI) even at the low PPFD. Based on these results, we discuss possible roles for CP and AOX in the light.  相似文献   

9.
A Frankia strain ISU 0224887 was isolated from spore negative root nodules of Gymnostoma sumatranum and was grown in pure culture. It was infective and effective for Gymnostoma species but failed to nodulate Allocasuarina and Casuarina seedlings. Light and scanning electron microscopy of it in nitrogen free medium revealed a filamentous mat of septate and branched hyphae bearing sporangia and vesicles capable of fixing nitrogen. The strain also produced an orange pigment after 2 weeks culture. The strain utilized only TWEEN 80 and propionate as sole carbon sources. The different antibiotics used showed varying effects on its growth.  相似文献   

10.
Fusarium and Rhizoctonia genera are important pathogens of many field crops worldwide. They are constantly evolving and expanding their host range. Selecting resistant cultivars is an effective strategy to break their infection cycles. To this end, we screened a collection of Medicago truncatula accessions against Fusarium oxysporum, Fusarium solani, and Rhizoctonia solani strains isolated from different plant species. Despite the small collection, a biodiversity in the disease response of M. truncatula accessions ranging from resistant phenotypes to highly susceptible ones was observed. A17 showed relative resistance to all fungal strains with the lowest disease incidence and ratings while TN1.11 was among the susceptible accessions. As an initiation of the characterization of resistance mechanisms, the antioxidant enzymes’ activities, at the early stages of infections, were compared between these contrasting accessions. Our results showed an increment of the antioxidant activities within A17 plants in leaves and roots. We also analyzed the responses of a population of recombinant inbred lines derived from the crossing of A17 and TN1.11 to the infection with the same fungal strains. The broad-sense heritability of measured traits ranged from 0.87 to 0.95, from 0.72 to 0.96, and from 0.14 to 0.85 under control, F. oxysporum, and R. solani conditions, respectively. This high estimated heritability underlines the importance of further molecular analysis of the observed resistance to identify selection markers that could be incorporated into a breeding program and thus improving soil-borne pathogens resistance in crops.  相似文献   

11.
The phytopathogenic fungi Colletotrichum circinans, Fusarium solani, and Rhizoctonia solani were incubated in aerated (0, 0.5, 1 dm3 min–1) potato dextrose broth (PDB) or Czapek-Dox broth (CDB), under 0-, 12- or 24-h photoperiods. Greater dry mass was produced in PDB. Higher air flows improved dry mass of F. solani and R. solani. The 24-h photoperiod improved F. solani dry mass. Except for F. solani, which was not affected, incubation in PDB increased protein content. The no air treatment increased protein content in F. solani, 0.5 dm3 min–1 produced the highest protein content in R. solani, but air flow-rate did not affect C. circinans. Incubation in the dark produced the lowest protein content in C. circinans, the highest under the 24-h photoperiod for R. solani, and photoperiod did not affect protein content in F. solani. Protein content in R. solani, incubated in CDB, was lowest at the 0 dm3 min–1 air flow at all photoperiods. Molecular masses of most proteins were under 30 kDa, and numbers of bands in SDS-PAGE gels varied with air flow. In CDB, especially under 12- or 24-h photoperiods, proteins in F. solani were between 1.6 and 310 kDa. For R. solani in PDB, at 0.5 dm3 min–1 air flow and 12-h light, proteins were between 6 and 81 kDa.  相似文献   

12.
The growth and pigmentation of 99 strains of Fusarium , mainly of Fusarium oxysporum and F. solani , on ammonium salts agar containing either mannitol, sorbitol or xylitol as sole source of carbon is described. After 7–14 d incubation strains of F. oxysporum could be distinguished from F. solani by both their pigmentation and the size and shape of conidiogenous cells. The application of these media to routine screening of isolates is discussed.  相似文献   

13.
In the present study, photosynthetic parameters including gas exchanges, pigment contents, and chlorophyll fluorescence, were compared in two contrasting local Medicago truncatula lines TN6.18 and TN8.20, in response to salt added to the nutrient solution. Plants were cultivated under symbiotic nitrogen fixation (SNF) after inoculation with a reference strain Sinorhizobium meliloti 2011, a very tolerant strain to salinity (700 mM NaCl), and grown in a controlled glasshouse. On one month old plants (with active SNF), salt treatment (75 mM NaCl) was gradually applied. Photosynthesis, assimilating pigments and chlorophyll fluorescence were monitored throughout the experiment during both short and long terms, compared to control (non-saline) conditions. A genotypic variation in salt tolerance was found; TN6.18 was the more sensitive to salinity. The relative tolerance of TN8.20 was concomitant with the highest photochemical quenching coefficient (qP) affecting the maximum quantum yield of PSII (Y); the real quantum yield (?exc) was the most affected in the sensitive line. Moreover, stomatal and PSII reaction centers activities differed clearly between the studied lines. We found that the effect of salinity on photosynthesis of M. truncatula was related to PSII activity reduction rather than to stomatal conductance limitation. Photosynthesis was reduced by the inhibition of CO2 assimilation caused by PSII damage. This was clearly estimated by the Y, ?exc and especially by the quantum yield of electron transport of PSII (ΦPSII). Thus, on the basis of our results on the two local M. truncatula lines, we recommend the use of chlorophyll fluorescence as non-destructive screening method to discriminate susceptible and resistant legumes to salt stress.  相似文献   

14.
About 50 bacterial strains, each of Pseudomonas fluorescens, from different rhizospheric soil of different plants were screened for antagonistic activity against Curvularia lunata, Fusarium oxysporum, Alternaria padwickii, Rhizoctonia solani causing black kernel, kernel spotting, root rots, stackburn and sheath blight diseases of rice (Oryza sativa L.). Out of the 50 isolates, 15 isolates were found to be effective in lysing the cell wall of the above-mentioned putative pathogens tested in vitro. These Pseudomonas isolates produced mycolytic enzymes, viz. β-1,3-glucanases, β-1,4-glucanases and lipases. P. fluorescens PAK1 and PAK12 among the strains were more effective for the production of these enzymes while PAK12 produce good level of β-1,3-glucanases, β-1,4-glucanases and lipases against tested fungal pathogens. These findings demonstrate a mechanism of antagonism by P. fluorescens against different fungal plant pathogens.  相似文献   

15.

Key message

NO-mediated alternative pathway plays an important role in protecting wheat seedlings against drought stress through dissipating excessive reducing equivalents generated by photosynthesis.

Abstract

Alternative pathway (AP) has been proven to be involved in responses to various stresses. However, the mechanisms of AP in defense response to drought stress are still lacking. The aims of this work are to investigate the role of AP in drought tolerance and how AP is induced under drought stress using two wheat cultivars with different drought tolerance. Our results showed that Longchun22 cultivar is more tolerant to drought than 98SN146 cultivar. Seedlings exposed to drought led to a significant increase in AP, and it increased more in Longchun22. Furthermore, chlorophyll fluorescence parameters (Fv/Fm, ΦPSII, qP) decreased significantly in drought-treated seedlings, especially in 98SN146, indicating that photoinhibition occurred under drought stress. Pretreatment with SHAM, the malate–oxaloacetate shuttle activity and photosynthetic efficiency were further inhibited in drought-treated seedlings, resulting in more serious oxidative damage as indicated by higher levels of malondialdehyde and hydrogen peroxide. Moreover, NO modulated AP under drought stress by increasing AOX1a expression and pyruvate content. Taken together, these results indicate that NO-mediated AP is involved in optimizing photosynthesis under drought stress by avoiding the over-reduction of photosynthetic electron transport chain, thus reducing reactive oxygen species production and oxidative damage in wheat leaves.
  相似文献   

16.
17.
Photosynthesis Research - Optimization of photosynthetic performance and protection against abiotic stress are essential to sustain plant growth. Photorespiratory metabolism can help plants to...  相似文献   

18.
Yang  Tianquan  Li  Youhan  Liu  Yu  He  Liangliang  Liu  Aizhong  Wen  Jiangqi  Mysore  Kirankumar S.  Tadege  Million  Chen  Jianghua 《Plant molecular biology》2021,105(1-2):193-204
Plant Molecular Biology - A 3-ketoacyl-CoA synthase involved in biosynthesis of very long chain fatty acids and cuticular wax plays a vital role in aerial organ development in M. truncatula....  相似文献   

19.
Localized infection in cucumber cotyledons with Colletotrichum lagenarium induced resistance against infection after challenge inoculation with Rhizoctonia solani AG2–2 and Fusarium oxysporum f. sp. cucumerinum in the roots. The plants were unprotected in soil that was infested heavily with R. solani or in contact with the mycelium, and induced resistance was not observed. Wounding of the root also negated the effect of induced resistance to F. oxysporum .  相似文献   

20.
Oldroyd GE  Long SR 《Plant physiology》2003,131(3):1027-1032
Bacterially derived Nod factor is critical in the establishment of the legume/rhizobia symbiosis. Understanding the mechanisms of Nod factor perception and signal transduction in the plant will greatly advance our understanding of this complex interaction. Here, we describe the identification of a new locus, nodulation-signaling pathway 2 (NSP2), of Medicago truncatula that is involved in Nod factor signaling. Mutants at this locus are blocked for Nod factor-induced gene expression and show a reduced root hair deformation response. nsp2 plants also show a complete absence of infection and cortical cell division following Sinorhizobium meliloti inoculation. Nod factor-induced calcium spiking, one of the earliest responses tested, is still functional in these mutant plants. We conclude that the gene NSP2 is a component of the Nod factor signal transduction pathway that lies downstream of the calcium-spiking response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号