首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Candida biofilms are tolerant to conventional antifungal therapeutics and the host immune system. The transition of yeast cells to hyphae is considered a key step in C. albicans biofilm development, and this transition is inhibited by the quorum-sensing molecule farnesol. We hypothesized that fatty acids mimicking farnesol might influence hyphal and biofilm formation by C. albicans. Among 31 saturated and unsaturated fatty acids, six medium-chain saturated fatty acids, that is, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid and lauric acid, effectively inhibited C. albicans biofilm formation by more than 75% at 2 µg ml−1 with MICs in the range 100–200 µg ml−1. These six fatty acids at 2 µg ml−1 and farnesol at 100 µg ml−1 inhibited hyphal growth and cell aggregation. The addition of fatty acids to C. albicans cultures decreased the productions of farnesol and sterols. Furthermore, down-regulation of several hyphal and biofilm-related genes caused by heptanoic or nonanoic acid closely resembled the changes caused by farnesol. In addition, nonanoic acid, the most effective compound diminished C. albicans virulence in a Caenorhabditis elegans model. Our results suggest that medium-chain fatty acids inhibit more effectively hyphal growth and biofilm formation than farnesol.  相似文献   

2.
Abstract

The aim of this study was to investigate the antibacterial activity, antibiotic-associated synergy, and anti-biofilm activity of the ruthenium complex, cis-[RuCl2 (dppb) (bqdi)]2+ (RuNN). RuNN exhibited antimicrobial activity against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 15.6 to 62.5?µg ml?1 and minimum bactericidal concentration (MBC) values ranging from 62.5 to 125?µg ml?1. A synergistic effect against Staphylococcus spp. was observed when RuNN was combined with ampicillin, and the range of associated fractional inhibitory concentration index (FICI) values was 0.187 to 0.312. A time-kill curve indicated the bactericidal activity of RuNN in the first 1–5?h. In general, RuNN inhibited biofilm formation and disrupted mature biofilms. Furthermore, RuNN altered the cellular morphology of S. aureus biofilms. Further, RuNN did not cause hemolysis of erythrocytes. The results of this study provide evidence that RuNN is a novel therapeutic candidate to treat bacterial infections caused by Staphylococcus biofilms.  相似文献   

3.
This study aimed to determine the minimum inhibitory concentration (MIC) of kaempferol and quercetin against planktonic and biofilm forms of the Candida parapsilosis complex. Initially, nine C. parapsilosis sensu stricto, nine C. orthopsilosis and nine C. metapsilosis strains were used. Planktonic susceptibility to kaempferol and quercetin was assessed. Growing and mature biofilms were then exposed to the flavonoids at MIC or 10xMIC, respectively, and theywere also analyzed by confocal laser scanning microscopy. The MIC ranges were 32-128 µg ml?1 for kaempferol and 0.5-16 µg ml?1 for quercetin. Kaempferol and quercetin decreased (P?<?0.05) the metabolic activity and biomass of growing biofilms of the C. parapsilosis complex. As for mature biofilms, the metabolic effects of the flavonoids varied, according to the cryptic species, but kaempferol caused an overall reduction in biofilm biomass. Microscopic analyses showed restructuring of biofilms after flavonoid exposure. These results highlight the potential use of these compounds as sustainable resources for the control of fungal biofilms.  相似文献   

4.
Carvacrol has been recognized as an efficient growth inhibitor of food pathogens. However, carvacrol oil is poorly water-soluble and can be oxidized, decomposed or evaporated when exposed to the air, light, or heat. To overcome these limitations, a carvacrol nanoemulsion was developed and its antimicrobial activity against food pathogens evaluated in this study. The nanoemulsion containing 3% carvacrol oil, 9% surfactants (HLB 11) and 88% water, presented good stability over a period of 90 days. In general, the carvacrol nanoemulsion (MIC: 256 µg ml−1 for E. coli and Salmonella spp., 128 µg ml−1 for Staphylococcus aureus and Pseudomonas aeruginosa) exhibited improved antimicrobial activity compared to the free oil. The carvacrol nanoemulsion additionally displayed bactericidal activity against Escherichia coli, P. aeruginosa and Salmonella spp. Therefore, the results of this study indicated that carvacrol oil nanoemulsions can potentially be incorporated into food formulations, wherein their efficacy for the prevention and control of microbial growth could be evaluated.  相似文献   

5.
A bioactive peptide of 8595 Da was purified from the cell free supernatant of Lactococcus garvieae subsp. bovis BSN307T. MALDI MS/MS peptide mapping and the data base search displayed no significant similarity to any reported antimicrobial peptide of LAB. This peptide at a dose concentration of 200 µg ml−1 inhibited the growth of both Gram-positive and Gram-negative bacteria by 58–89% and a dose of 500 µg ml−1 scavenged 50% of DPPH-free radicals generated. Interestingly, cytotoxicity assay demonstrated that 17 µg ml−1 of peptide selectively inhibited 50% proliferation of mammalian cancer cell lines HeLa and MCF-7 whereas normal H9c2 cells remained unaffected. Fluorescent microscopic analysis after DAPI nuclear staining of HeLa cells showed characteristics of apoptosis and activation of caspase-3 was ascertained by caspase-3 fluorescence assay.  相似文献   

6.
The antibacterial activity of a Cinnamomum cassia essential oil (EO) and of its main component trans-cinnamaldehyde (90% w/w) was examined against five Listeria monocytogenes strains. The minimal inhibitory concentrations (MICs) of Ccassia EO against the five Lmonocytogenes strains were identical (250 µg ml−1), while the minimal bactericidal concentrations (MBCs) ranged between 800 and 1200 µg ml−1. In order to study if this EO and trans-cinnamaldehyde altered the five strains at the membrane level, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) was measured in presence of different concentrations (1/2MIC, MIC, 2MIC) of these antibacterial agents. A concentration-dependent increase of fluorescence anisotropy of DPH in their presence reflecting a rigidification of the membrane was observed for the five strains. This modification of the membrane fluidity was associated with a perturbation of the selective membrane permeability, as a perturbation of the gradient between intracellular and extracellular pH was also observed.  相似文献   

7.
Bacterial biofilms are associated with chronic infections due to their resistance to antimicrobial agents. Staphylococcus aureus is a versatile human pathogen and can form biofilms on human tissues and diverse medical devices. To identify novel biofilm inhibitors of S. aureus, the supernatants from a library of 458 Actinomycetes strains were screened. The culture supernatants (1% v/v) of more than 10 Actinomycetes strains inhibited S. aureus biofilm formation by more than 80% without affecting the growth. The culture supernatants of these biofilm-reducing Actinomycetes strains contained a protease (equivalent to 0.1 μg proteinase K ml−1), which both inhibited S. aureus biofilm formation and detached pre-existing S. aureus biofilms. This study suggests that protease treatment could be a feasible tool to reduce and eradicate S. aureus biofilms.  相似文献   

8.
Abstract

This study describes an ex vivo model that creates an environment for dermatophyte biofilm growth, with features that resemble those of in vivo conditions, designing a new panorama for the study of antifungal susceptibility. Regarding planktonic susceptibility, MIC ranges were 0.125-1?µg ml?1 for griseofulvin and 0.000097-0.25?µg ml?1 for itraconazole and terbinafine. sMIC50 ranges were 2->512?µg ml?1 for griseofulvin and 0.25->64?µg ml?1 for itraconazole and terbinafine. CLSM images demonstrated a reduction in the amount of cells within the biofilm, but hyphae and conidia were still observed and biofilm biomass was maintained. SEM analysis demonstrated a retraction in the biofilm matrix, but fungal structures and water channels were preserved. These results show that ex vivo biofilms are more tolerant to antifungal drugs than in vitro biofilms, suggesting that environmental and nutritional conditions created by this ex vivo model favor biofilm growth and robustness, and hence drug tolerance.  相似文献   

9.
In the present study, the efficacy of generally recognised as safe (GRAS) antimicrobial plant metabolites in regulating the growth of Staphylococcus aureus and S. epidermidis was investigated. Thymol, carvacrol and eugenol showed the strongest antibacterial action against these microorganisms, at a subinhibitory concentration (SIC) of ≤ 50 μg ml?1. Genistein, hydroquinone and resveratrol showed antimicrobial effects but with a wide concentration range (SIC = 50–1,000 μg ml?1), while catechin, gallic acid, protocatechuic acid, p-hydroxybenzoic acid and cranberry extract were the most biologically compatible molecules (SIC ≥ 1000 μg ml?1). Genistein, protocatechuic acid, cranberry extract, p-hydroxybenzoic acid and resveratrol also showed anti-biofilm activity against S. aureus, but not against S. epidermidis in which, surprisingly, these metabolites stimulated biofilm formation (between 35% and 1,200%). Binary combinations of cranberry extract and resveratrol with genistein, protocatechuic or p-hydroxibenzoic acid enhanced the stimulatory effect on S. epidermidis biofilm formation and maintained or even increased S. aureus anti-biofilm activity.  相似文献   

10.
The human gut houses a complex group of bacterial genera, including both opportunistic pathogens and commensal micro-organisms. These are regularly exposed to antibiotics, and their subinhibitory concentrations play a pivotal role in shaping the microbial responses. This study was aimed to investigate the effects exerted by sub-MICs of nalidixic acid (NA) on the growth rate, bacterial motility, biofilm formation and expression of outer membrane proteins (OMPs) in a commensal strain of E. coli. The NA-sensitive strain was sequentially passaged under sub-MICs of NA. E-test was used to determine the MIC values of NA. Results indicated significant changes in the growth profile of commensal E. coli upon exposure to NA at sub-MICs. Differential expression of OMPs was observed in cells treated with sub-MICs of NA. Bacterial motility was reduced under 1/2 MIC of NA. Interestingly, successive passaging under 1/2 MIC of NA led to the emergence of resistant E. coli with an increased MIC value of 64 µg ml−1 in just 24 days. The NA-resistant variant was confirmed by comparing its 16S rRNA sequence to that of the sensitive commensal strain. Mutations in the Quinolone Resistance-Determining Regions (QRDRs) of chromosomal gyrA, and Topoisomerase IV-encoding parC genes were detected in NA-resistant E. coli. Our results demonstrate how antibiotics play an important role as signalling molecules or elicitors in driving the pathogenicity of commensal bacteria in vitro.  相似文献   

11.

Two custom-designed bioreactors were used to evaluate the effect of shear on biofilms of a succinic acid producer, Actinobacillus succinogenes. The first bioreactor allowed for in situ removal of small biofilm samples used for microscopic imaging. The second bioreactor allowed for complete removal of all biofilm and was used to analyse biofilm composition and productivity. The smooth, low porosity biofilms obtained under high shear conditions had an average cell viability of 79% compared to 57% at the lowest shear used. The maximum cell-based succinic acid productivity for high shear biofilm was 2.4 g g−1DCW h−1 compared to the 0.8 g g−1DCW h−1 of the low shear biofilm. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays confirmed higher cell metabolic activities for high shear developed biofilm compared to biofilm developed at low shear conditions. Results clearly indicated that high shear biofilm cultivation has beneficial morphological, viability, and cell-based productivity characteristics.

  相似文献   

12.
Aims: To evaluate the anti‐biofilm activity of the commercially available essential oils from two Boswellia species. Methods and Results: The susceptibility of staphylococcal and Candida albicans biofilms was determined by methyltiazotetrazolium (MTT) staining. At concentrations ranging from 217·3 μg ml?1 (25% v/v) to 6·8 μg ml?1 (0·75% v/v), the essential oil of Boswellia papyrifera showed considerable activity against both Staphylococcus epidermidis DSM 3269 and Staphylococcus aureus ATCC 29213 biofilms. The anti‐microbial efficacy of this oil against S. epidermidis RP62A biofilms was also tested using live/dead staining in combination with fluorescence microscopy, and we observed that the essential oil of B. papyrifera showed an evident anti‐biofilm effect and a prevention of adhesion at sub‐MIC concentrations. Boswellia rivae essential oil was very active against preformed C. albicans ATCC 10231 biofilms and inhibited the formation of C. albicans biofilms at a sub‐MIC concentration. Conclusions: Essential oils of Boswellia spp. could effectively inhibit the growth of biofilms of medical relevance. Significance and Impact of the Study: Boswellia spp. essential oils represent an interesting source of anti‐microbial agents in the development of new strategies to prevent and treat biofilms.  相似文献   

13.
Staphylococcus aureus is now amongst the most important pathogenic bacteria responsible for bloodstream nosocomial infections and for biofilm formation on indwelling medical devices. Its increasing resistance to common antibiotics, partly attributed to its ability to form biofilms, is a challenge for the development of new antimicrobial agents. Accordingly, the goal of this study was to evaluate the effect of a coral associated actinomycete (CAA) - 3 on S. aureus biofilms both in vitro and in vivo. Methanolic extracts of CAA-3 showed a reduction in in vitro biofilm formation by S. aureus ATCC 11632, methicillin resistant S. aureus ATCC 33591 and clinical isolates of S. aureus at the biofilm inhibitory concentration (BIC) of 0.1 mg ml?1. Furthermore, confocal laser scanning microscope (CLSM) studies provide evidence of CAA-3 inhibiting intestinal colonisation of S. aureus in the nematode Caenorhabditis elegans. To conclude, this study for the first time, reports CAA as a promising source of anti-biofilm compounds, for developing novel drugs against highly resistant staphylococcal biofilms.  相似文献   

14.
Efflux pumps are important defense mechanisms against antimicrobial drugs and maintenance of Burkholderia pseudomallei biofilms. This study evaluated the effect of the efflux pump inhibitor promethazine on the structure and antimicrobial susceptibility of B. pseudomallei biofilms. Susceptibility of planktonic cells and biofilms to promethazine alone and combined with antimicrobials was assessed by the broth microdilution test and biofilm metabolic activity was determined with resazurin. The effect of promethazine on 48 h-grown biofilms was also evaluated through confocal and electronic microscopy. The minimum inhibitory concentration (MIC) of promethazine was 780 mg l?1, while the minimum biofilm elimination concentration (MBEC) was 780–3,120 mg l?1. Promethazine reduced the MIC values for erythromycin, trimethoprim/sulfamethoxazole, gentamicin and ciprofloxacin and reduced the MBEC values for all tested drugs (p<0.05). Microscopic analyses demonstrated that promethazine altered the biofilm structure of B. pseudomallei, even at subinhibitory concentrations, possibly facilitating antibiotic penetration. Promethazine improves antibiotics efficacy against B. pseudomallei biofilms, by disrupting biofilm structure.  相似文献   

15.
The aim of this work was to select endophytic fungi from mangrove plants that produced antimicrobial substances. Minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) or minimal fungicidal concentrations (MFC) of crude extracts from 150 isolates were determined against potential human pathogens by a colorimetric microdilution method. Ninety-two isolates (61.3%) produced inhibitory compounds. Most of the extracts (28–32%) inhibited Staphylococcus aureus (MIC/MBC 4–200/64–200 μg ml−1). Only two extracts inhibited Pseudomonas aeruginosa (MIC/MBC 200/>200 μg ml−1). 25.5 and 11.7% inhibited Microsporum gypseum and Cryptococcus neoformans (MIC/MFC 4–200/8–200 μg ml−1 and 8–200/8–200 μg ml−1, respectively), while 7.5% were active against Candida albicans (MIC/MFC 32–200/32–200 μg ml−1). None of the extracts inhibited Escherichia coli. The most active fungal extracts were from six genera, Acremonium, Diaporthe, Hypoxylon, Pestalotiopsis, Phomopsis, and Xylaria as identified using morphological and molecular methods. Phomopsis sp. MA194 (GU592007, GU592018) isolated from Rhizophora apiculata showed the broadest antimicrobial spectrum with low MIC values of 8–32 μg ml−1against Gram-positive bacteria, yeasts and M. gypseum. It was concluded that endophytic fungi from mangrove plants are diverse, many produce compounds with antimicrobial activity and could be suitable sources of new antimicrobial natural products.  相似文献   

16.
Using nematophagous fungi for the biological control of animal parasitic nematodes will become one of the most promising strategies in the search for alternative chemical drugs. The purpose of this study was to check the in vitro activity of four anthelmintics, four chemical fungicides and two antifungal drugs on the spore germination of nematophagous fungi: Duddingtonia flagrans (SF170), Arthrobotrys oligospora (447), Arthrobotrys superba (435) and Arthrobotrys sp. (PS011). A modified 24-well cell culture plate assay was conducted to evaluate the susceptibility of nematophagous fungi against drugs tested by calculating the effective middle concentrations (EC50) of each tested drug to inhibit the germination of fungal spores. EC50 ranged between 0·7 and 47·2 μg ml−1 for fenbendazole, thiabendazole and ivermectin, except levamisole (546·5–4057·8 μg ml−1). EC50 of tested fungicides was 0·6–2·3 μg ml−1 for carbendazim, 55·9–247·4 μg ml−1 for metalaxyl, 24·4–45·2 μg ml−1 for difenoconazole, and 555·9–1438·3 μg ml−1 for pentachloronitrobenzene (PCNB). EC50 of two antifungal drugs was 0·03–3·4 μg ml−1 for amphotericin B and 0·3–10·9 μg ml−1 for ketoconazole. The results showed that 10 tested drugs, except for levamisole and PCNB, had in vitro inhibitory effects on nematophagous fungi. The chlamydospores of Dflagrans had the highest sensitivity to nine tested drugs, except for ketoconazole.  相似文献   

17.
α-Mangostin-rich extract (AME) exhibited satisfactory inhibitory activities against all tested MRSA strains, with minimum inhibitory concentrations (MICs) of 7·8–31·25 µg ml−1, whereas lawsone methyl ether (LME) and ampicillin revealed weak antibacterial activity with MICs of 62·5–125 µg ml−1. However, the combination of AME and LME showed synergistic effects against all tested MRSA strains with fractional inhibitory concentration index (FICI) values of 0·008–0·009, while the combination of AME and ampicillin, as well as LME and ampicillin produced synergistic effects with FICIs of 0·016–0·257. A time-kill assay against MRSA (DMST 20654 strain) revealed a 6-log reduction in CFU per ml, which completely inhibited bacterial growth for the combinations of AME and LME, AME and ampicillin, and LME and ampicillin at a 8-h incubation, while those against MRSA (2468 strain) were at 10-h incubation. The combination of α-mangostin and LME as well as the combinations of each compound with ampicillin synergized the alteration of membrane permeability. In addition, α-mangostin, LME and ampicillin inhibited the biofilm formation of MRSA. These findings indicated that the combinations of AME and LME or each of them in combination with ampicillin had enhanced antibacterial activity against MRSA. Therefore, these compounds might be used as the antibacterial cocktails for treatment of MRSA.  相似文献   

18.
Acanthopanax (A.) henryi (Oliv.) Harms contain many bioactive compounds commonly used in traditional Chinese medicine. The objective of the present study was to investigate the antibacterial activity of the single constituent, Eleutheroside K (ETSK) isolated from the leaves of A. henryi (Oliv.) Harms, against methicillin-resistant Staphylococcus (S.) aureus (MRSA). Broth microdilution assay was used to measure the minimal inhibitory concentration (MIC) and the MIC values of ETSK against eight clinical S. aureus strains were all 50 µg ml−1. At sub-inhibitory concentrations, a synergistic effect between oxacillin (OXA) and ETSK was confirmed using checkerboard dilution assay and time-kill curve analysis. The bacteriostatic effect became more pronounced when ETSK was used in combination with detergent (Triton X-100) or ATPase inhibitor (N, N′-dicyclohexylcarbodiimide). According to western blot analysis, the down-regulated expression of Penicillin-binding protein 2a (PBP2a) further validated that the bacterial activity was inhibited when treated with ETSK in a dose-dependent manner. Results based on our study verified that ETSK significantly suppressed MRSA infections and emphasized the potential application of ETSK as a novel anti-MRSA natural drug.  相似文献   

19.
《Phytomedicine》2013,20(14):1285-1287
The aim of the present report was to evaluate antimicrobial/anti-biofilm activity of 7-(2-oxohexyl)-taxodione, a novel taxodione derivative isolated from n-hexane extract of Salvia austriaca hairy roots. Antimicrobial assays showed that 7-(2-oxohexyl)-taxodione was at least 4 times more active than taxodione against methicillin-susceptible as well against methicillin-resistant staphylococci with MIC of 1.25–2.5 μg ml−1. This compound was less active against vancomycin-resistant enterococci (VRE), on the same level as taxodione (MIC ranged 10.0–20.0 μg ml−1). The presence of 7-(2-oxohexyl)-taxodione in the culture medium (at MIC, ½ MIC or ¼ MIC) decreased adhesion of staphylococci to abiotic surfaces, which in turn caused a reduction in biofilm formation during 24 h, by approximately 25–30%. Also, the extent of established biofilm eradication was found to be significant, although it required an increased concentration of the compound. This is the first report on the antimicrobial activity of this, up to now not known compound, isolated from transformed roots of S. austriaca.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号