首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

2.
Recent work has shown that stomatal conductance (gs) and assimilation (A) are responsive to changes in the hydraulic conductance of the soil to leaf pathway (KL), but no study has quantitatively described this relationship under controlled conditions where steady‐state flow is promoted. Under steady‐state conditions, the relationship between gs, water potential (Ψ) and KL can be assumed to follow the Ohm's law analogy for fluid flow. When boundary layer conductance is large relative to gs, the Ohm's law analogy leads to gs = KLsoilleaf)/D, where D is the vapour pressure deficit. Consequently, if stomata regulate Ψleaf and limit A, a reduction in KL will cause gs and A to decline. We evaluated the regulation of Ψleaf and A in response to changes in KL in well‐watered ponderosa pine seedlings (Pinus ponderosa). To vary KL, we systematically reduced stem hydraulic conductivity (k) using an air injection technique to induce cavitation while simultaneously measuring Ψleaf and canopy gas exchange in the laboratory under constant light and D. Short‐statured seedlings (< 1 m tall) and hour‐long equilibration times promoted steady‐state flow conditions. We found that Ψleaf remained constant near ? 1·5 MPa except at the extreme 99% reduction of k when Ψleaf fell to ? 2·1 MPa. Transpiration, gs, A and KL all declined with decreasing k (P < 0·001). As a result of the near homeostasis in bulk Ψleaf, gs and A were directly proportional to KL (R2 > 0·90), indicating that changes in KL may affect plant carbon gain.  相似文献   

3.
Diurnal depression of leaf hydraulic conductance in a tropical tree species   总被引:10,自引:2,他引:8  
Diurnal patterns of hydraulic conductance of the leaf lamina (Kleaf) were monitored in a field‐grown tropical tree species in an attempt to ascertain whether the dynamics of stomatal conductance (gs) and CO2 uptake (Aleaf) were associated with short‐term changes in Kleaf. On days of high evaporative demand mid‐day depression of Kleaf to between 40 and 50% of pre‐dawn values was followed by a rapid recovery after 1500 h. Leaf water potential during the recovery stage was less than ?1 MPa implying a refilling mechanism, or that loss of Kleaf was not linked to cavitation. Laboratory measurement of the response of Kleaf to Ψleaf confirmed that leaves in the field were operating at water potentials within the depressed region of the leaf ‘vulnerability curve’. Diurnal courses of Kleaf and Ψleaf predicted from measured transpiration, xylem water potential and the Kleaf vulnerability function, yielded good agreement with observed trends in both leaf parameters. Close correlation between depression of Kleaf, gs and Aleaf suggests that xylem dysfunction in the leaf may lead to mid‐day depression of gas exchange in this species.  相似文献   

4.
Mesophyll conductance to CO2 (gm) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross‐section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf gm (gm,leaf). Thus, the bulk gm,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring gm,leaf. A species with bifacial structure, Arbutus × ‘Marina’, and an isobilateral species, Triticum durum L., had contrasting responses of gm,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of gm,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that gm,leaf apparently responds to light has large implications for how gm,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring gm under full light saturation. Responses of gm,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area‐based phenomenon.  相似文献   

5.
In habitats with low water availability, a fundamental challenge for plants will be to maximize photosynthetic C-gain while minimizing transpirational water-loss. This trade-off between C-gain and water-loss can in part be achieved through the coordination of leaf-level photosynthetic and hydraulic traits. To test the relationship of photosynthetic C-gain and transpirational water-loss, we grew, under common growth conditions, 18 C4 grasses adapted to habitats with different mean annual precipitation (MAP) and measured leaf-level structural and anatomical traits associated with mesophyll conductance (gm) and leaf hydraulic conductance (Kleaf). The C4 grasses adapted to lower MAP showed greater mesophyll surface area exposed to intercellular air spaces (Smes) and adaxial stomatal density (SDada) which supported greater gm. These grasses also showed greater leaf thickness and vein-to-epidermis distance, which may lead to lower Kleaf. Additionally, grasses with greater gm and lower Kleaf also showed greater photosynthetic rates (Anet) and leaf-level water-use efficiency (WUE). In summary, we identify a suite of leaf-level traits that appear important for adaptation of C4 grasses to habitats with low MAP and may be useful to identify C4 species showing greater Anet and WUE in drier conditions.  相似文献   

6.
The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (gwv) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of gwv to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (Kleaf), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that Kleaf was correlated with the hydraulic conductance of large longitudinal veins (Klv, r2 = 0.81), but was not related to Kroot (r2 = 0.01). Stomatal sensitivity to D was correlated with Kleaf relative to total leaf area (r2 = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an ‘apparent feedforward’ response. For these individuals, E began to decline at lower values of D in plants with low Kroot (r2 = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand.  相似文献   

7.
Stomata regulate CO2 uptake for photosynthesis and water loss through transpiration. The approaches used to represent stomatal conductance (gs) in models vary. In particular, current understanding of drivers of the variation in a key parameter in those models, the slope parameter (i.e. a measure of intrinsic plant water‐use‐efficiency), is still limited, particularly in the tropics. Here we collected diurnal measurements of leaf gas exchange and leaf water potential (Ψleaf), and a suite of plant traits from the upper canopy of 15 tropical trees in two contrasting Panamanian forests throughout the dry season of the 2016 El Niño. The plant traits included wood density, leaf‐mass‐per‐area (LMA), leaf carboxylation capacity (Vc,max), leaf water content, the degree of isohydry, and predawn Ψleaf. We first investigated how the choice of four commonly used leaf‐level gs models with and without the inclusion of Ψleaf as an additional predictor variable influence the ability to predict gs, and then explored the abiotic (i.e. month, site‐month interaction) and biotic (i.e. tree‐species‐specific characteristics) drivers of slope parameter variation. Our results show that the inclusion of Ψleaf did not improve model performance and that the models that represent the response of gs to vapor pressure deficit performed better than corresponding models that respond to relative humidity. Within each gs model, we found large variation in the slope parameter, and this variation was attributable to the biotic driver, rather than abiotic drivers. We further investigated potential relationships between the slope parameter and the six available plant traits mentioned above, and found that only one trait, LMA, had a significant correlation with the slope parameter (R2 = 0.66, n = 15), highlighting a potential path towards improved model parameterization. This study advances understanding of gs dynamics over seasonal drought, and identifies a practical, trait‐based approach to improve modeling of carbon and water exchange in tropical forests.  相似文献   

8.
The temperature dependence of mesophyll conductance (gm) was measured in well‐watered red raspberry (Rubus idaeus L.) plants acclimated to leaf‐to‐air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (Tleaf) rise from 20 to 35 °C. Contrary to the great majority of gm temperature responses published to date, we found a pronounced reduction of gm with increasing Tleaf irrespective of leaf chamber O2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (gs), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of gm. However, the concerted diurnal reductions of gm and gs were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of gm under favourable leaf water status. Our results challenge the view that the temperature dependence of gm can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes.?  相似文献   

9.
The circadian regulation of leaf hydraulic conductance (Kleaf) was investigated in Helianthus annuus L. (sunflower). Kleaf was measured with an high pressure flow meter during the light and dark period from plants growing at a photoperiod of 12 h. Kleaf was 4.0 e−4 kg s−1 m−2 MPa−1 during the light period (LL) and 30–40% less during the dark period (DL). When photoperiod was inverted and leaves were measured for Kleaf at their subjective light or dark periods, Kleaf adjusted to the new conditions requiring 48 h for increasing from dark to light values and 4 d for the opposite transition. Plants put in continuous dark showed Kleaf oscillating from light to dark values in phase with their subjective photoperiod indicating that Kleaf changes were induced by the circadian clock. Several cuts through the minor veins reduced leaf hydraulic resistance (Rleaf) of both LL and DL to the same value (1.0 e + 3 MPa m2 s kg−1) that equalled the vascular resistance (Rv). The contribution of the non-vascular leaf resistance (Rnv) to Rleaf was of 71.9% in DL and of 58.4% in LL. The dominant Rnv was shown to be reversibly modulated by mercurials, suggesting that aquaporins play a role in diurnal changes of Kleaf.  相似文献   

10.
Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration1,2. Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψleaf). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance3. Leaf hydraulic conductance (Kleaf = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. Kleaf is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, Kleaf responds strongly to the internal and external leaf environment3. Kleaf can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes4, and Kleaf declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation5-10. Because Kleaf can constrain gs and photosynthetic rate across species in well watered conditions and during drought, and thus limit whole-plant performance they may possibly determine species distributions especially as droughts increase in frequency and severity11-14.We present a simple method for simultaneous determination of Kleaf and gs on excised leaves. A transpiring leaf is connected by its petiole to tubing running to a water source on a balance. The loss of water from the balance is recorded to calculate the flow rate through the leaf. When steady state transpiration (E, mmol • m-2 • s-1) is reached, gs is determined by dividing by vapor pressure deficit, and Kleaf by dividing by the water potential driving force determined using a pressure chamber (Kleaf= E /- Δψleaf, MPa)15.This method can be used to assess Kleaf responses to different irradiances and the vulnerability of Kleaf to dehydration14,16,17.  相似文献   

11.
Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs) and leaf water potential (Ψleaf). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse‐grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16–19 for the respective treatments. Xylem sap pH and NO3? and Ca2+ concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs, but did not change Ψleaf. Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re‐watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA‐induced response, independent of changes in Ψleaf.  相似文献   

12.
Leaf internal, or mesophyll, conductance to CO2 (gm ) is a significant and variable limitation of photosynthesis that also affects leaf transpiration efficiency (TE). Genotypic variation in gm and the effect of gm on TE were assessed in six barley genotypes (four Hordeum vulgare and two H. bulbosum). Significant variation in gm was found between genotypes, and was correlated with photosynthetic rate. The genotype with the highest gm also had the highest TE and the lowest carbon isotope discrimination as recorded in leaf tissue (Δp). These results suggest gm has unexplored potential to provide TE improvement within crop breeding programmes.  相似文献   

13.
In this study, tree hydraulic conductance (K tree) was experimentally manipulated to study effects on short-term regulation of stomatal conductance (g s), net photosynthesis (A) and bulk leaf water potential (Ψleaf) in well watered 5–6 years old and 1.2 m tall maritime pine seedlings (Pinus pinaster Ait.). K tree was decreased by notching the stem and increased by progressively excising the root system and stem. Gas exchange was measured in a chamber at constant irradiance, vapour pressure deficit, leaf temperature and ambient CO2 concentration. As expected, we found a strong and positive relationship between g s and K tree (r = 0.92, P = 0.0001) and between A and K tree (r = 0.9, P = 0.0001). In contrast, however, we found that the response of Ψleaf to K tree depended on the direction of change in K tree: increases in K tree caused Ψleaf to decrease from around −1.0 to −0.6 MPa, but reductions in K tree were accompanied by homeostasis in Ψleaf (at −1 MPa). Both of these observations could be explained by an adaptative feedback loop between g s and Ψleaf, with Ψleaf prevented from declining below the cavitation threshold by stomatal closure. Our results are consistent with the hypothesis that the observed stomatal responses were mediated by leaf water status, but they also suggest that the stomatal sensitivity to water status increased dramatically as Ψleaf approached −1 MPa.  相似文献   

14.
Common gardens were established along a ~900 km latitudinal transect to examine factors limiting geographical distributions of boreal and temperate tree species in eastern North America. Boreal representatives were trembling aspen (Populus tremuloides Michx.) and paper birch (Betula papyrifera Marsh.), while temperate species were eastern cottonwood (Populus deltoides Bartr ex. Marsh var. deltoides) and sweetgum (Liquidambar styraciflua L.). The species were compared with respect to adjustments of leaf photosynthetic metabolism along the transect, with emphasis on temperature sensitivities of the maximum rate of ribulose bisphosphate (RuBP) carboxylation (EV) and regeneration (EJ). During leaf development, the average air temperature (Tgrowth) differed between the coolest and warmest gardens by 12 °C. Evidence of photosynthetic thermal acclimation (metabolic shifts compensating for differences in Tgrowth) was generally lacking in all species. Namely, neither EV nor EJ was positively related to Tgrowth. Correspondingly, the optimum temperature (Topt) of ambient photosynthesis (Asat) did not vary significantly with Tgrowth. Modest variation in Topt was explained by the combination of EV plus the slope and curvature of the parabolic temperature response of mesophyll conductance (gm). All in all, species differed little in photosynthetic responses to climate. Furthermore, the adaptive importance of photosynthetic thermal acclimation was overshadowed by gm's influence on Asat's temperature response.  相似文献   

15.
Very few studies have attempted to disentangle the respective role of ontogeny and water stress on leaf photosynthetic attributes. The relative significance of both effects on photosynthetic attributes has been investigated in leaves of field‐grown almond trees [Prunus dulcis (Mill.) D. A. Webb] during four growth cycles. Leaf ontogeny resulted in enhanced leaf dry weight per unit area (Wa), greater leaf dry‐to‐fresh weight ratio and lower N content per unit of leaf dry weight (Nw). Concomitantly, area‐based maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), mesophyll conductance to CO2 diffusion (gm)′ and light‐saturated net photosynthesis (Amax) declined in both well‐watered and water‐stressed almond leaves. Although gm and stomatal conductance (gs) seemed to be co‐ordinated, a much stronger coordination in response to ontogeny and prolonged water stress was observed between gm and the leaf photosynthetic capacity. Under unrestricted water supply, the leaf age‐related decline of Amax was equally driven by diffusional and biochemical limitations. Under restricted soil water availability, Amax was mainly limited by gs and, to a lesser extent, by photosynthetic capacity and gm. When both ontogeny and water stress effects were combined, diffusional limitations was the main determinant of photosynthesis limitation, while stomatal and biochemical limitations contributed similarly.  相似文献   

16.
A comparative study on stomatal control under water deficit was conducted on grapevines of the cultivars Grenache, of Mediterranean origin, and Syrah of mesic origin, grown near Montpellier, France and Geisenheim, Germany. Syrah maintained similar maximum stomatal conductance (gmax) and maximum leaf photosynthesis (Amax) values than Grenache at lower predawn leaf water potentials, Ψleaf, throughout the season. The Ψleaf of Syrah decreased strongly during the day and was lower in stressed than in watered plants, showing anisohydric stomatal behaviour. In contrast, Grenache showed isohydric stomatal behaviour in which Ψleaf did not drop significantly below the minimum Ψleaf of watered plants. When g was plotted versus leaf specific hydraulic conductance, Kl, incorporating leaf transpiration rate and whole‐plant water potential gradients, previous differences between varieties disappeared both on a seasonal and diurnal scale. This suggested that isohydric and anisohydric behaviour could be regulated by hydraulic conductance. Pressure‐flow measurements on excised organs from plants not previously stressed revealed that Grenache had a two‐ to three‐fold larger hydraulic conductance per unit path length (Kh) and a four‐ to six‐fold larger leaf area specific conductivity (LSC) in leaf petioles than Syrah. Differences between internodes were only apparent for LSC and were much smaller. Cavitation detected as ultrasound acoustic emissions on air‐dried shoots showed higher rates for Grenache than Syrah during the early phases of the dry‐down. It is hypothesized that the differences in water‐conducting capacity of stems and especially petioles may be at the origin of the near‐isohydric and anisohydric behaviour of g.  相似文献   

17.
Leaf photosynthesis of crops acclimates to elevated CO2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free‐air CO2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0–2.0°C). Parameters of the C3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (gs) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO2, elevated temperature, and their combination. The combination of elevated CO2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The gs model significantly underestimated gs under the combination of elevated CO2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled gs–FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of gs hardly improved prediction of leaf photosynthesis under the four combinations of CO2 and temperature. Therefore, the typical procedure that crop models using the FvCB and gs models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change.  相似文献   

18.
Coordination between structural and physiological traits is key to plants' responses to environmental fluctuations. In heterobaric leaves, bundle sheath extensions (BSEs) increase photosynthetic performance (light‐saturated rates of photosynthesis, Amax) and water transport capacity (leaf hydraulic conductance, Kleaf). However, it is not clear how BSEs affect these and other leaf developmental and physiological parameters in response to environmental conditions. The obscuravenosa (obv) mutation, found in many commercial tomato varieties, leads to absence of BSEs. We examined structural and physiological traits of tomato heterobaric and homobaric (obv) near‐isogenic lines grown at two different irradiance levels. Kleaf, minor vein density, and stomatal pore area index decreased with shading in heterobaric but not in homobaric leaves, which show similarly lower values in both conditions. Homobaric plants, on the other hand, showed increased Amax, leaf intercellular air spaces, and mesophyll surface area exposed to intercellular airspace (Smes) in comparison with heterobaric plants when both were grown in the shade. BSEs further affected carbon isotope discrimination, a proxy for long‐term water‐use efficiency. BSEs confer plasticity in traits related to leaf structure and function in response to irradiance levels and might act as a hub integrating leaf structure, photosynthetic function, and water supply and demand.  相似文献   

19.
Decline in mesophyll conductance (gm) plays a key role in limiting photosynthesis in plants exposed to elevated ozone (O3). Leaf anatomical traits are known to influence gm, but the potential effects of O3-induced changes in leaf anatomy on gm have not yet been clarified. Here, two poplar clones were exposed to elevated O3. The effects of O3 on the photosynthetic capacity and anatomical characteristics were assessed to investigate the leaf anatomical properties that potentially affect gm. We also conducted global meta-analysis to explore the general response patterns of gm and leaf anatomy to O3 exposure. We found that the O3-induced reduction in gm was critical in limiting leaf photosynthesis. Changes in liquid-phase conductance rather than gas-phase conductance drive the decline in gm under elevated O3, and this effect was associated with thicker cell walls and smaller chloroplast sizes. The effects of O3 on palisade and spongy mesophyll cell traits and their contributions to gm were highly genotype-dependent. Our results suggest that, while anatomical adjustments under elevated O3 may contribute to defense against O3 stress, they also cause declines in gm and photosynthesis. These results provide the first evidence of anatomical constraints on gm under elevated O3.  相似文献   

20.
Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in three Pinus radiata clones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction in Kroot‐r caused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease in Kplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery of Kroot‐r and gs. Our results demonstrated that the reduction in Kplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleaf as water stress started. We concluded that higher Kplant‐l is associated with water stress resistance by sustaining a less negative Ψleaf and delaying stomatal closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号