首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total ion (Na+, K+, Ca2+, SO4 2? and Cl?) accumulation by plants, ion contents in plant tissues and ion secretion by salt glands on the surface of shoots of Tamarix ramosissima adapted to different soil salinity, namely low (0.06 mmol Na+/g soil), moderate (3.14–4.85 mmol Na+/g soil) and strong (7.56 mmol Na+/g soil) were analyzed. There are two stages of interrelated and complementary regulation of ion homeostasis in whole T. ramosissima plants: (1) regulation of ion influx into the plant from the soil and (2) changing the secretion efficiency of salt glands on shoots. The secretion efficiency of salt glands was appraised by the ratio of ion secretion to tissue ion content. Independent of soil salinity, the accumulation of K+ and Ca2+ was higher than the contents of these ions in the soil. Furthermore, the accumulation of K+, Ca2+ and SO4 2? ions by plants was maintained within a narrow range of values. Under low soil salinity, Na+ was accumulated, whereas under moderate and strong salinity, the influxes of Na+ were limited. However, under strong salinity, the accumulation of Na+ was threefold higher than that under low soil salinity. This led to a change in the Na+/K+ ratio (tenfold), an increase in the activity of salt glands (tenfold) and a reduction in plant growth (fivefold). An apparently high Na+/K+ ratio was the main factor determining over-active functioning of salt glands under strong salinity. Principal component analysis showed that K+ ions played a key role in ion homeostasis at all levels of salinity. Ca2+ played a significant role at low salinity, whereas Cl? and interrelated regulatory components (K+ and proline) played a role under strong salinity. Proline, despite its low concentration under strong salinity, was involved in the regulation of secretion by salt glands. Different stages and mechanisms of ion homeostasis were dominant in T. ramosissima plants adapted to different levels of salinity. These mechanisms facilitated the accumulation of Na+ in plants under low soil salinity, the limitation of Na+ under moderate salinity and the over-activation of Na+ secretion by salt glands under strong salinity, which are all necessary for maintaining ion homeostasis and water potential in the whole plant.  相似文献   

2.
罗达  吴正保  史彦江  宋锋惠 《生态学报》2022,42(5):1876-1888
研究盐胁迫下3个品种平欧杂种榛幼苗叶片解剖结构和离子代谢特征,以揭示盐胁迫响应与适应机制及不同品种的耐盐性差异。以‘达维’、‘辽榛7号’、‘玉坠’2年生压条苗为材料,在盆栽条件下经轻度、中度、重度(分别为50、100、200 mmol/L NaCl)盐胁迫处理,设对照为0,研究幼苗叶片显微解剖结构参数和Na~+、K~+、Cl~-、Ca2+含量的变化及其在根、茎、叶中的吸收、运输和分配特征。不同品种平欧杂种榛叶片厚度、上表皮厚度、下表皮厚度、栅栏组织和海绵组织厚度随着盐胁迫程度的增强呈现出先增加后降低的特点,轻度和中度胁迫下各参数显著高于对照。中度盐胁迫显著提高了各品种叶片结构紧密度。盐胁迫导致平欧杂种榛根、茎、叶Na~+和Cl~-含量明显高于对照。盐胁迫下,Na~+和Cl~-在叶中的绝对含量明显高于茎和根,但二者的增幅以根中最大,叶中最小,表明平欧杂种榛根系首先会吸收并截留一定数量的Na~+和Cl~-,然后将其运输至茎和叶中。与对照相比,轻度和中度盐胁迫下根、茎对K~+和Ca2+的吸收保持稳定或减少,叶对K~+和Ca2+...  相似文献   

3.
淋洗与植物作用耦合对盐渍化土壤的改良效应   总被引:2,自引:0,他引:2  
唐让云  曹靖  董放  董利苹  孔晓乐 《生态学报》2015,35(17):5686-5694
以甘肃秦王川引大灌区盐渍化土壤为背景,以当地5种耐盐植物为材料,采用根袋法盆栽试验动态研究了淋洗结合植物种植对盐渍化土壤改良的效应。结果表明:与种前相比,单纯的淋洗作用对土壤pH值影响不大,而淋洗结合植物种植明显降低了土壤pH值,且根际土壤pH值小于非根际土壤的,5种耐盐植物中霸王根际土壤pH值降低幅度最大,达0.6个单位。K+、Ca2+、Na+、Mg2+、Cl-和SO2-4在5种植物根际土壤中均有不同程度的富集,富集程度因物种的不同而不同,随培养时间的延长而呈波动状态。5种供试植物和对照组土壤中的6种主要的可溶性盐分离子随淋洗次数和培养时间的延长呈下降趋势。在培养120d后,单纯淋洗的土壤中K+、Ca2+、Na+、Mg2+、Cl-和SO2-4的含量相比种前平均分别降低了33.3%、26.1%、35.6%、32.5%、35.5%和36.3%,植物吸收带走的上述各离子的含量平均分别占种前的46.2%、8.1%、30.2%、7.2%和21.6%,其中霸王吸收带走的盐分离子最多,而淋洗结合种植植物的土壤中上述各离子的含量与种前相比平均分别降低了67.25%、63.73%、83.8%、67.5%、81.55%和78.46%,由此可见,淋洗结合植物种植的脱盐效果优于单纯淋洗,且土壤中主要的盐分离子Na+、Cl-和SO2-4的含量降低幅度最大,通过计算得出,在Cl-、SO2-4和Na+减少的总量中还有37.73%的Na+、38.22%的Cl-和35.14%的SO2-4的减少量是由植物根系的物理化学作用机制引起的。  相似文献   

4.
Salt tolerance of maize (Zea mays L.): the role of sodium exclusion   总被引:5,自引:2,他引:3  
The influence of NaCl and Na2SO4 on growth of two maize cultivars (Zea mays cv. Pioneer 3906 and cv. Across 8023) differing in Na+ uptake was investigated in two green-house experiments. Na+ treatment with different accompanying anions (Cl?/SO42?) showed that ion toxicity was caused by Na+. While shoot growth of the two cultivars was markedly affected by salt in comparison to the control during the first 2–3 weeks, there were only slight differences between the cultivars. The shoot Ca2+ concentration was reduced in both cultivars, and the youngest leaves contained an even lower concentration compared with the rest of the shoot. During this first phase, Across 8023 tended to have higher concentrations of Ca2+ than Pioneer 3906. The Na+-excluding cultivar Pioneer 3906 showed continuous, although reduced, growth compared with the control, while the Na+ concentration in the shoot decreased until flowering. Cultivar Across 8023 accumulated Na+ until flowering: the reduction in the growth of stressed plants was greater than that for Pioneer 3906. Leaves of cultivar Across 8023 showed clear toxic symptoms, while those of the more salt-tolerant cultivar Pioneer 3906 did not. It is concluded that Na+ exclusion contributes to the salt tolerance of maize.  相似文献   

5.
Salt Tolerance in Aquatic Macrophytes: Ionic Relation and Interaction   总被引:1,自引:0,他引:1  
Effects of seawater salinity (SWS) and pure NaCl on the intracellular contents of Na+, K+, Mg2+, Ca2+, chlorophylls (Chl) and carotenoids (Car) were studied in three submerged aquatic macrophytes, Hydrilla verticillata, Najas indica and Najas gramenia, which differed in their tolerance to salinity. NaCl resulted in significant increase in Chl/Car ratio in the salt-sensitive H. verticillata and moderately salt-tolerant N. indica, but not in the salt-tolerant N. gramenia. SWS treatment did not result in any significant change in the ratio. The intracellular content of Na+ increased significantly in all the test plants upon exposure to both NaCl and SWS. The content of K+ decreased significantly in these plants upon salinity treatment, except in N. gramenia. The contents of Ca2+ and Mg2+ decreased significantly upon NaCl treatment and remained unchanged or increased upon SWS treatment. No relationship between salt tolerance and K+/Na+ ratio was observed. The maintenance of a minimal level of K+ was observed to be the most probable requirement of salt tolerance in aquatic macrophytes.  相似文献   

6.
彭云玲  保杰  叶龙山  王永健  燕利斌 《生态学报》2014,34(24):7320-7328
盐胁迫影响植物组织的离子分布,不同品种间存在差异。以玉米耐盐自交系81162和8723及盐敏感自交系P138为材料,研究了不同浓度(0、60、140、220 mmol/L)Na Cl胁迫下萌动期种子和幼苗的不同部位中Na+、K+、Ca2+含量以及K+/Na+和Ca2+/Na+比值的变化,旨在探讨不同自交系耐盐性差异的原因。结果表明,在萌动种子中,3个玉米自交系中的Na+积累量表现为种皮胚胚乳,K+累积表现为胚种皮胚乳;幼苗中,Na+积累表现为根茎叶。随着Na Cl浓度的增加,3个玉米自交系萌动种子和幼苗中的Na+含量逐渐升高,但是萌动种子中耐盐自交系81162和8723的Na+增加幅度小于盐敏感自交系P138,Na+含量小于盐敏感自交系P138;幼苗中耐盐自交系81162和8723的Na+增加幅度大于盐敏感自交系P138,幼苗根中Na+含量大于盐敏感自交系P138;茎叶中的Na+含量小于盐敏感自交系P138。随着Na Cl浓度的增加,萌动种子和幼苗中的K+和Ca2+含量逐渐降低。K+离子在耐盐自交系81162和8723萌动种子和幼苗中的降低幅度小于盐敏感自交系P138;Ca2+离子在耐盐自交系81162和8723幼苗中的降低幅度小于盐敏感自交系P138;而在萌动种子中3个自交系Ca2+的流失差异不大。耐盐自交系81162和8723萌动种子和幼苗中K+含量都大于盐敏感自交系P138。耐盐自交系81162和8723的萌动种子和幼苗根中Ca2+含量都大于盐敏感自交系P138;幼苗叶片中则小于盐敏感自交系P138。萌动种子和幼苗中K+/Na+和Ca2+/Na+均随着Na Cl浓度的升高而降低,K+/Na+比值表现为耐盐自交系81162和8723大于盐敏感自交系P138。耐盐自交系81162和8723通过调节离子平衡维持萌动种子和幼苗中较高的K+/Na+比值从而提高耐盐性。  相似文献   

7.
In four species of salt-tolerant eucalypts (Eucalyptus raveretiana, E. spathulata, E. sargentii and E. loxophleba), we found substantial concentrations of quercitol – a cyclitol known for its accumulation in seeds of Quercus. Quercitol was absent in old foliage of E. globulus, a species noted for greater susceptibility to salinity, and also absent in the moderately tolerant E. camaldulensis, but, relative to other species, both had higher foliar concentrations of inositol. Simple sugars and cyclitols accumulated to osmotically significant concentrations in all species. The osmotic potential of expressed sap was always less than that of the external ‘soil’ solution and increasing salinity produced predictable reductions in growth and increases in ion concentrations in foliage of saplings of four eucalypt species. The more salt-tolerant species, E. spathulata, E. loxophleba and E. sargentii, were able to maintain well-regulated leaf Na+ concentrations even at 300 mol m−3 NaCl. These more salt-tolerant species also showed an apparent increase in net selectivity for K+ over Na+ as salinity increased, irrespective of the Na+ : Ca2+ ratio of the external medium (range 25 : 1 to 75 : 1; Ca2+ always ≥ 4.0 mol m−3). By contrast, E. globulus was unable to exclude Na+ when exposed to higher NaCl concentrations (e.g. 200 and 300 mol m−3). Carbon isotope signatures of foliage reflected imposed salinity but were not strongly enough correlated with growth to support previous suggestions that isotope discrimination be a means of evaluating salt tolerance. On the other hand, patterns of sugar and cyclitol accumulation should be further explored in eucalypts as traits contributing to salt tolerance, and with potential use as markers in breeding programmes.  相似文献   

8.
To determine if calcium-dependent secretagogues directly act on epithelial cells to elicit CI secretion, their effects on CI transport and intracellular Ca2+ concentrations ([Ca2+]i) were determined in primary cultures of rabbit distal colonic crypt cells. The Cl sensitive fluorescent probe, 6-methoxyquinolyl acetoethyl ester, MQAE and the Ca2+-sensitive fluorescent probe, fura-2AM were used to assess Cl transport and [Ca2+]i, respectively. Basal Cl transport (0.274 ± 0.09 mM/sec) was inhibited significantly by the Cl channel blocker diphenylamine-2-carboxylate (DPC, 50 μM, 0.068 ± 0.02 mM/sec; P < 0.001) and the Na+/K+/2Cl cotransport inhibitor furosemide (1 μM, 0.137 ± 0.04 mM/sec; P < 0.01). Ion substitution studies using different halides revealed the basal influx to be I > F ≥ Cl > Br. DPC inhibited I influx by ∼50%, F influx by 80%, Cl influx by 85%, and Br influx by 90%. Furosemide significantly inhibited influx of Br (84%) and Cl (81%) but not of F and I. The effects of agents known to alter biological response by increasing [Ca2+]i in other epithelial systems were used to stimulate Cl transport. Cl influx in mM/second was stimulated by 1 μM histamine (0.58 ± 0.05), 10 μM neurotensin (2.07 ± 0.32), 1 μM serotonin (1.63 ± 0.28), and 0.1 μM of the Ca2+ ionophore A23187 (2.05 ± 0.40). The Cl permeability stimulated by neurotensin, serotonin, and A23187 was partially blocked by DPC or furosemide added alone or in combination. Histamine-induced Cl influx was significantly inhibited by only furosemide. Indomethacin blocked histamine-stimulated Cl permeability but had no effect on the actions of the other agents. These studies, focusing on isolated colonocytes without the contribution of submucosal elements, reveal that (1) histamine stimulates Cl transport by activating the Na+/K+/2Cl cotransporter via a cyclooxygenase-dependent pathway; (2) neurotensin, serotonin, and A23187 activate both Cl channels and the cotransporter, and their actions are cyclooxygenase-independent. © 1996 Wiley-Liss, Inc.  相似文献   

9.
《Cell calcium》2015,58(5-6):348-365
High environmental salt elicits an increase in cytosolic Ca2+ ([Ca2+]cyt) in plants, which is generated by extracellular Ca2+ influx and Ca2+ release from intracellular stores, such as vacuole and endoplasmic reticulum. This study aimed to determine the physiological mechanisms underlying Ca2+ release from vacuoles and its role in ionic homeostasis in Populus euphratica. In vivo Ca2+ imaging showed that NaCl treatment induced a rapid elevation in [Ca2+]cyt, which was accompanied by a subsequent release of vacuolar Ca2+. In cell cultures, NaCl-altered intracellular Ca2+ mobilization was abolished by antagonists of inositol (1, 4, 5) trisphosphate (IP3) and cyclic adenosine diphosphate ribose (cADPR) signaling pathways, but not by slow vacuolar (SV) channel blockers. Furthermore, the NaCl-induced vacuolar Ca2+ release was dependent on extracellular ATP, extracellular Ca2+ influx, H2O2, and NO. In vitro Ca2+ flux recordings confirmed that IP3, cADPR, and Ca2+ induced substantial Ca2+ efflux from intact vacuoles, but this vacuolar Ca2+ flux did not directly respond to ATP, H2O2, or NO. Moreover, the IP3/cADPR-mediated vacuolar Ca2+ release enhanced the expression of salt-responsive genes that regulated a wide range of cellular processes required for ion homeostasis, including cytosolic K+ maintenance, Na+ and Cl exclusion across the plasma membrane, and Na+/H+ and Cl/H+ exchanges across the vacuolar membrane.  相似文献   

10.
The response of two tomato lines (Lycopersicon esculentum Mill. Ca2+ use efficient line 113 and Ca2+ use inefficient line 67) to a range of constant low Ca2+ concentrations was investigated in a sand culture system. Four Ca2+ concentrations were established and maintained throughout the experiment: 0.038, 0.75, 1.51 and 3.75 mM CaCl2 on a constant background of 1.1 mM NaCl. Response to Ca2+ was determined by analysis of growth parameters and of shoot Ca2+, Na+, K+ and Cl concentrations. Differences in Ca2+ and K+ use efficiencies were expressed as the calcium utilization efficiency ratio, or CaER, and potassium utilization efficiency ratio, or KER, (mg of dry weight produced·mg−1 of Ca2+ or K+ in plant). Dry weight production of line 113 was significantly higher than line 67, and was associated with a higher CaER and KER. The Ca2+ treatments differentially affected shoot Ca2+, Na+, Cl and K+ concentrations. As expected, shoot Ca2+ and Cl concentrations increased whereas Na+ concentration decreased with Ca2+ treatments. Line 113 had more than twice the amount of Na+ in shoot tissue than line 67. The K+ to Na+ ratio was twice as high in line 67 than in line 113. No evidence for higher soluble Ca2+ contributing to higher Ca2+ utilization was observed. The relationship between Ca2+ use efficiency and growth was not correlated with higher percentages of soluble Ca2+ in leaf tissue or with differences in root morphology. Differences in Ca2+ use efficiency alone could not explain the higher growth rate in line 113. This study demonstrated that the physiological factors involved in the genetic control of Ca2+ use efficiency should be assessed under a range of constant low Ca2+ concentrations in order to observe the physiological changes taking place. Thus, the use of Ca2+ deficient conditions are to be avoided as it may interfere with the expression of the physiological factors involved in Ca2+ use efficiency.  相似文献   

11.
P2U/2Y-receptors elicit multiple signaling in Madin-Darby canine kidney (MDCK) cells, including a transient increase of [Ca2+] i , activation of phospholipases C (PLC) and A2 (PLA2), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). This study examines the involvement of these signaling pathways in the inhibition of Na+,K+,Cl cotransport in MDCK cells by ATP. The level of ATP-induced inhibition of this carrier (∼50% of control values) was insensitive to cholera and pertussis toxins, to the PKC inhibitor calphostin C, to the cyclic nucleotide-dependent protein kinase inhibitors, H-89 and H-8 as well as to the inhibitor of serine-threonine type 1 and 2A phosphoprotein phosphatases okadaic acid. ATP led to a transient increase of [Ca2+]i that was abolished by a chelator of Ca2+ i , BAPTA. However, neither BAPTA nor the Ca2+ ionophore A231287, or an inhibitor of endoplasmic reticulum Ca2+-pump, thapsigargin, modified ATP-induced inhibition of Na+,K+,Cl cotransport. An inhibitor of PLC, U73122, and an inhibitor of MAPK kinase (MEK), PD98059, blocked ATP-induced inositol-1,4,5-triphosphate production and MAPK phosphorylation, respectively. However, these compounds did not modify the effect of ATP on Na+,K+,Cl cotransport activity. Inhibitors of PLA2 (AACOCF3), cycloxygenase (indomethacin) and lypoxygenase (NDGA) as well as exogenous arachidonic acid also did not affect ATP-induced inhibition of Na+,K+,Cl cotransport. Inhibition of the carrier by ATP persisted in the presence of inhibitors of epithelial Na+ channels (amiloride), Cl channels (NPPB) and Na+/H+ exchanger (EIPA) and was insensitive to cell volume modulation in anisosmotic media and to depletion of cells with monovalent ions, thus ruling out the role of other ion transporters in purinoceptor-induced inhibition of Na+,K+,Cl cotransport. Our data demonstrate that none of the known purinoceptor-stimulated signaling pathways mediate ATP-induced inhibition of Na+,K+,Cl cotransport and suggest the presence of a novel P2-receptor-coupled signaling mechanism. Received: 29 July 1998/Revised: 19 October  相似文献   

12.
Selected NaCl tolerant and unselected control lines ofHolcus lanatus L.,Lolium perenne L.,Dactylis glomerata L., andFestuca rubra L. were grown in sand culture at 0, 100, 200, 250, and/or 300 ml m-3NaCl for seven weeks. The tolerant lines of all four species produced significantly greater both shoot and root dry matter at all NaCl treatments compared with the unselected control lines. Na+, K+, Cl-, Ca2+, and Mg2+ contents of leaf, stalk, and roots of each species were determined. The tolerant lines ofH. lanatus contained less Na+ and less Ca2+ but higher K+ in shoots, compared with the unselected line. By contrast theL. perenne tolerant line had higher Na+ and Cl- contents at 250, and 300 mol m-3 NaCl in shoots than the unselected line suggesting a halophytic nature of the tolerant line.D. glomerata accumulated greater quantities of ions compared with the other species examined. The tolerant line contained significantly less Cl- but more K+ in its shoots than the unselected line. Na+, Cl-, and K+ contents in the shoots of the tolerant line ofF.rubra were higher than in the unselected line shoots. Therefore selection for NaCl tolerance may provide useful material for examining the basis of tolerance.  相似文献   

13.
为了解盐胁迫对植物的影响, 研究了根系NaCl 胁迫在温室条件下对盐生植物榄仁(Terminalia catappa)和甜土植物枇杷(Eriobotrya japonica)幼苗生长、矿质元素和灰分含量的影响。结果表明:在根系盐胁迫下, 两种植物幼苗的叶片病斑多分布于中心区, 灰分含量增加, 幼苗的Na+-Cl- 呈极显著的正相关关系, 盐胁迫对两种植物幼苗的5 种矿质元素(Ca2+, Mg2+, Na+, K+, Cl-)含量影响不大, 但它们在植物中的分布发生了变化。可见, 盐生植物和甜土植物抗盐性的区别是量上的不同, 没有质的差别。  相似文献   

14.
研究了渗透和盐胁迫处理对转Bt基因抗虫棉(Gossypium hirsutum) 99B种子的萌发和幼苗生长的影响,以及幼苗不同器官离子吸收和分配的差异。结果表明:渗透和盐胁迫均对转Bt基因抗虫棉幼苗的生长有抑制作用,其中PEG的抑制作用最强,而3种盐的抑制程度以CaCl2>NaCl>Na2SO4,且在Na+含量相同时,Cl-的毒害大于SO42-。渗透胁迫下使根、茎和叶中的Na+和Cl-含量提高,K+、Ca2+、SO42-含量和K+/Na+、Ca2+/Na+和SO42-/Cl-比值降低,且地上部的变化幅度大于地下部的,其中以PEG的影响最为显著,其次是CaCl2,Na2SO4处理最弱。这些说明,转Bt基因抗虫棉99B的耐盐性较弱。  相似文献   

15.
Quantitative time-resolved measurements of cytosolic Ca2+ release by photolysis of caged InsP3 have been made in single rat submandibular cells using patch clamp whole-cell recording to measure the Ca2+-activated Cl and K+ currents. Photolytic release of InsP3 from caged InsP3 at 100 Joules caused transient inward (VH = 60 mV) and outward (VH = 0 mV) currents, which were nearly symmetric in their time course. The inward current was reduced when pipette Cl concentration was decreased, and the outward current was suppressed by K+ channel blockers, indicating that they were carried by Cl and K+, respectively. Intracellular pre-loading of the InsP3 receptor antagonist heparin or the Ca2+ chelator EGTA clearly prevented both inward and outward currents, indicating that activation of Ca2+-dependent Cl and K+ currents underlies the inward and the outward currents. At low flash intensities, InsP3 caused Ca2+ release which normally activated the K+ and Cl currents in a mono-transient manner. At higher intensities, however, InsP3 induced an additional delayed outward K+ current (IK(delay)). IK(delay) was independent of the initial K+ current, independent of extracellular Ca2+, inhibited by TEA, and gradually prolongated by repeated flashes. The photolytic release of Ca2+ from caged Ca2+ did not mimic the IK(delay). It is suggested that Ca2+ releases from the InsP3-sensitive pools in an InsP3 concentration-dependent manner. Low concentrations of InsP3 induce the transient Ca2+-dependent Cl and K+ currents, which reflects the local Ca2+ release, whereas high concentrations of InsP3 induce a delayed Ca2+-dependent K+ current, which may reflect the Ca2+ wave propagation. J. Cell. Physiol. 174:387–397, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
为探究黄河三角洲湿地柽柳灌丛下土壤的盐渍化特征,在黄河三角洲国家级自然保护区(37°35''-12''N,118°33''-119°20''E)黄河入海口附近,根据长势基本一致的原则分别在碱蓬群落、柽柳群落和芦苇群落各选3株柽柳,采集柽柳灌丛下土壤样品,分析土壤盐分和盐碱化参数的空间分布以及距基茎不同距离处研究对象(土壤总盐(TS)、电导率(EC)、pH、交换性钠百分率(ESP))和环境因子(Na+、K+、Ca2+、Mg2+、Cl-、HCO3-、SO2-4)之间的关系。结果表明:(1)研究区土壤为弱碱化盐土,离子含量由高到低依次为Cl->Na+>SO2-4 >Ca2+>Mg2+>HCO-3>K+。除pH在土壤表层数值最低外,表层土壤TS、EC、ESP和盐分离子大于深层土壤,显示表聚性。(2)土壤盐分和盐碱化参数空间分布总体为:在柽柳基茎周围形成"盐谷"、"碱谷"效应, Na+、Mg2+、Cl-表现为"盐谷",K+ 、SO2-4 、Ca2+ 表现为"盐岛"。(3)在整个土壤剖面中,与TS、EC相关性最强的阴阳离子为Mg2+、Cl-,从灌丛中心到灌丛间裸地Ca2+、SO2-4与TS、EC的相关性逐渐减弱,Mg2+、Cl-与TS、EC的相关性逐渐增强。Ca2+和SO2-4与pH表现为较强的负相关性;与ESP相关性最强的阴离子为HCO-3,与之相关性最强的阳离子为Na+和K+,并且Na+和K+与ESP的相关性表现出从灌丛中心向外逐渐增强。(4)土壤盐渍化主要受控于Na+,从灌丛下到灌丛间裸地Cl-对盐渍化程度的影响逐渐增加,SO2-4的影响逐渐降低。  相似文献   

17.
The effects of exogenous 24-epibrassinolide (EBR) on the growth, oxidative damage, antioxidant system and ion contents in eggplant (Solanum melongena L.) seedlings under salt stress were investigated. Eggplant seedlings were exposed to 90 mM NaCl with 0, 0.025, 0.05, 0.10 and 0.20 mg dm−3 EBR for 10 d. EBR, especially at concentration 0.05 mg dm−3, alleviated growth suppression caused by NaCl stress, decreased electrolyte leakage, superoxide production and content of malondialdehyde and H2O2 in NaCl-treated plants. EBR also increased activities of superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase and the contents of ascorbic acid and reduced glutathione. Furthermore, we also found that Na+, Cl contents were decreased, K+, Ca2+ contents and K+/Na+, Ca2+/Na+ ratios were increased in the presence of EBR under salt stress.  相似文献   

18.
Summary In rabbit ileum, Ca2+/calmodulin (CaM) appears to be involved in physiologically inhibiting the linked NaCl absorptive process, since inhibitors of Ca2+/CaM stimulate linked Na+ and Cl absorption. The role of Ca2+/CaM-dependent phosphorylation in regulation of the brush-border Na+/H+ antiporter, which is believed to be part of the neutral linked NaCl absorptive process, was studied using purified brush-border membrane vesicles, which contain both the Na+/H+ antiporter and Ca2+/CaM-dependent protein kinase(s) and its phosphoprotein substrates. Rabbit ileal villus cell brush-border membrane vesicles were prepared by Mg precipitation and depleted of ATP. Using a freezethaw technique, the ATP-depleted vesicles were loaded with Ca2+, CaM, ATP and an ATP-regenerating system consisting of creatine kinase and creatine phosphate. The combination of Ca2+/CaM and ATP inhibited Na+/H+ exchange by 45±13%. This effect was specific since Ca2+/CaM and ATP did not alter diffusive Na+ uptake, Na+-dependent glucose entry, or Na+ or glucose equilibrium volumes. The inhibition of the Na+/H+ exchanger by Ca2+/CaM/ATP was due to an effect on theV max and not on theK m for Na+. In the presence of CaM and ATP, Ca2+ caused a concentration-dependent inhibition of Na+ uptake, with an effect 50% of maximum occurring at 120nm. This Ca2+ concentration dependence was similar to the Ca2+ concentration dependence of Ca2+/CaM-dependent phosphorylation of specific proteins in the vesicles. The Ca2+/CaM/ATP-inhibition of Na+/H+ exchange was reversed by W13, a Ca2+/CaM antagonist, but not by a hydrophobic control, W12, or by H-7, a protein kinase C antagonist. we conclude that Ca2+, acting through CaM, regulates ileal brush-border Na+/H+ exchange, and that this may be involved in the regulation of neutral linked NaCl absorption.  相似文献   

19.
A partially purified preparation of the lobster muscle Na+/Ca2+ exchanger was reconstituted with, presumably, random orientation in liposomes. Ca2+ efflux from 45Ca-loaded vesicles was studied in exchanger molecules in which the transporter cytoplasmic surface was exposed to the extravesicular (ev) medium. Extravesicular Na+ (Na ev )-dependent Ca2+ efflux depended directly upon the extravesicular Ca2+ concentration ([Ca2+] ev ) with a half-maximal activation at [Ca2+] ev = 0.6 μm. This suggests that the lobster muscle exchanger is catalytically upregulated by cytoplasmic Ca2+, as in most other species. In contrast, at low [Na+] ev , the Ca ev -binding site (i.e., on the cytoplasmic surface) for Ca2+ transported via Ca2+/Ca2+ exchange was half-maximally activated by about 7.5 μm Ca2+. Mild proteolysis of the Na+/Ca2+ exchanger by α-chymotrypsin also upregulated the Na ev -dependent Ca2+ efflux. Following proteolytic digestion in Ca-free medium, the exchanger was no longer regulated by nontransported ev Ca2+. Proteolytic digestion in the presence of 1.9 μm free ev Ca2+, however, induced only a 1.6-fold augmentation of Ca2+ efflux, whereas, after digestion in nominally Ca-free medium, a 2.3-fold augmentation was observed; Ca2+ also inhibited proteolytic degradation of the Na+/Ca2+ exchanger measured by immunoblotting. These data suggest that Ca2+, bound to a high affinity binding site, protects against the activation of the Na+/Ca2+ exchanger by α-chymotrypsin. Additionally, we observed a 6-fold increase in the Na+/Ca2+ exchange rate, on average, when the intra- and extravesicular salt concentrations were increased from 160 to 450 mm, suggesting that the lobster muscle exchanger is optimized for transport at the high salt concentration present in lobster body fluids. Received: 20 October 1999/Revised: 13 January 2000  相似文献   

20.
Spatial patterns of plant cover and species composition in arctic salt marsh and salt affected tundra near Prudhoe Bay, Alaska reflect gradients in elevation, soil conductivity, and soil concentrations of the ions prevalent in seawater. Soil conductivity and soil concentrations of Ca2+, Mg2+, Na+, K+, SO4 = and Cl were significantly related to site elevation, decreasing as elevation increased. Vascular plant species richness increased significantly as soil conductivity and soil ion concentrations decreased, and site elevation increased. Puccinellia phryganodes was the only species present in low elevation sites with low plant cover, high soil conductivity and high soil concentrations of Ca2+, Mg2+, Na+, K+, SO4 = and Cl. Mid-gradient sites were dominated by Carex subspathaceae. Plant cover at these sites was greater than at lower elevation sites, but bare ground was still present. Higher elevation sites had the lowest concentrations of soil ions and the lowest soil conductivities. These sites had little bare ground, contained as many as 16 species, and were dominated by Dupontia fischeri and Eriophorum angustifolium. Ordinations indicated that a complex topographic gradient related most closely to elevation and site distance from the coast best explains variation in the vegetation cover. Irregular deposition along the coastline partially or completely buried three sites in peat or sand up to 20 cm deep. Such rapid changes in plant cover and species composition contributes to the community patch mosaic typical of these marshes. Results suggest an individualistic response of plant species to the environmental gradients in salt marsh and salt affected tundra and are indicative of successional models developed in other marginal arctic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号