首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water uptake by roots: effects of water deficit   总被引:35,自引:0,他引:35  
The variable hydraulic conductivity of roots (Lp(r)) is explained in terms of a composite transport model. It is shown how the complex, composite anatomical structure of roots results in a composite transport of both water and solutes. In the model, the parallel apoplastic and cell-to-cell (symplastic and transcellular) pathways play an important role as well as the different tissues and structures arranged in series within the root cylinder (epidermis, exodermis, cortex, endodermis, stelar parenchyma). The roles of Casparian bands and suberin lamellae in the root's endo- and exodermis are discussed. Depending on the developmental state of these apoplastic barriers, the overall hydraulic resistance of roots is either more evenly distributed across the root cylinder (young unstressed roots) or is concentrated in certain layers (exo- and endodermis in older stressed roots). The reason for the variability of root Lp(r), is that hydraulic forces cause a dominating apoplastic flow of water around protoplasts, even in the endodermis and exodermis. In the absence of transpiration, water flow is osmotic in nature which causes a high resistance as water passes across many membranes on its passage across the root cylinder. The model allows for a high capability of roots to take up water in the presence of high rates of transpiration (high demands for water from the shoot). By contrast, the hydraulic conductance is low, when transpiration is switched off. Overall, this results in a non-linear relationship between water flow and forces (gradients of hydrostatic and osmotic pressure) which is otherwise hard to explain. The model allows for special root characteristics such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients are in line with the idea of some apoplastic bypasses for water within the root cylinder. According to the composite transport model, the switch from the hydraulic to the osmotic mode is purely physical. In the presence of heavily suberized roots, the apoplastic component of water flow may be too small. Under these conditions, a regulation of radial water flow by water channels dominates. Since water channels are under metabolic control, this component represents an 'active' element of regulation. Composite transport allows for an optimization of the water balance of the shoot in addition to the well-known phenomena involved in the regulation of water flow (gas exchange) across stomata. The model is employed to explain the responses of plants to water deficit and other stresses. During water deficit, the cohesion-tension mechanism of the ascent of sap in the xylem plays an important role. Results are summarized which prove the validity of the coehesion/tension theory. Effects of the stress hormone abscisic acid (ABA) are presented. They show that there is an apoplastic component of the flow of ABA in the root which contributes to the ABA signal in the xylem. On the other hand, (+)-cis-trans-ABA specifically affects both the cell level (water channel activity) and water flow driven by gradients in osmotic pressure at the root level which is in agreement with the composite transport model. Hydraulic water flow in the presence of gradients in hydrostatic pressure remains unchanged. The results agree with the composite transport model and resemble earlier findings of high salinity obtained for the cell (Lp) and root (Lp(r)) level. They are in line with known effects of nutrient deprivation on root Lp(r )and the diurnal rhythm of root Lp(r )recently found in roots of LOTUS.  相似文献   

2.
The hydraulic conductivity of roots (Lpr) of 6- to 8-d-old maize seedlings has been related to the chemical composition of apoplastic transport barriers in the endodermis and hypodermis (exodermis), and to the hydraulic conductivity of root cortical cells. Roots were cultivated in two different ways. When grown in aeroponic culture, they developed an exodermis (Casparian band in the hypodermal layer), which was missing in roots from hydroponics. The development of Casparian bands and suberin lamellae was observed by staining with berberin-aniline-blue and Sudan-III. The compositions of suberin and lignin were analyzed quantitatively and qualitatively after depolymerization (BF3/methanol-transesterification, thioacidolysis) using gas chromatography/mass spectrometry. Root Lpr was measured using the root pressure probe, and the hydraulic conductivity of cortical cells (Lp) using the cell pressure probe. Roots from the two cultivation methods differed significantly in (i) the Lpr evaluated from hydrostatic relaxations (factor of 1.5), and (ii) the amounts of lignin and aliphatic suberin in the hypodermal layer of the apical root zone. Aliphatic suberin is thought to be the major reason for the hydrophobic properties of apoplastic barriers and for their relatively low permeability to water. No differences were found in the amounts of suberin in the hypodermal layers of basal root zones and in the endodermal layer. In order to verify that changes in root Lpr were not caused by changes in hydraulic conductivity at the membrane level, cell Lp was measured as well. No differences were found in the Lp values of cells from roots cultivated by the two different methods. It was concluded that changes in the hydraulic conductivity of the apoplastic rather than of the cell-to-cell path were causing the observed changes in root Lpr. Received: 17 March 1999 / Accepted: 22 June 1999  相似文献   

3.
Cold acclimation process plays a vital role in the survival of chilling- and freezing-tolerant plants subjected to cold temperature stress. However, it remains elusive whether a cold acclimation process enhances root water uptake (a component of chilling tolerance) in chilling-sensitive crops such as rice. By analyzing the root hydraulic conductivity under cold stress for a prolonged time, we found that cold stress induced a gradual increase in root osmotic hydraulic conductivity [Lp(r(os))]. Compared with the control treatment (roots and shoots at 25°C), low root temperature (LRT) treatment (roots at 10°C; shoots at 25°C) dramatically reduced Lp(r(os)) within 1 h. However, Lp(r(os)) gradually increased during prolonged LRT treatment and it reached 10-fold higher values at day 5. Moreover, a coordinated up-regulation of root aquaporin gene expression, particularly OsPIP2;5, was observed during LRT treatment. Further, comparison of aquaporin gene expression under root-only chilling (LRT) and whole-plant chilling conditions, and in the roots of intact plants vs. shootless plants, suggests that a shoot to root signal is necessary for inducing the expression of aquaporin genes in the root. Collectively, these results demonstrate that a cold acclimation process for root water uptake functions in rice and is possibly regulated through aquaporins.  相似文献   

4.
Water uptake by plant roots: an integration of views   总被引:20,自引:0,他引:20  
Steudle  Ernst 《Plant and Soil》2000,226(1):45-56
A COMPOSITE TRANSPORT MODEL is presented which explains the variability in the ability of roots to take up water and responses of water uptake to different factors. The model is based on detailed measurements of 'root hydraulics' both at the level of excised roots (root hydraulic conductivity, Lpr) and root cells (membrane level; cell Lp) using pressure probes and other techniques. The composite transport model integrates apoplastic and cellular components of radial water flow across the root cylinder. It explains why the hydraulic conductivity of roots changes in response to the nature (osmotic vs. hydraulic) and intensity of water flow. The model provides an explanation of the adaptation of plants to conditions of drought and other stresses by allowing for a `coarse regulation of water uptake' according to the demands from the shoot which is favorable to the plant. Coarse regulation is physical in nature, but strongly depends on root anatomy, e.g. on the existence of apoplastic barriers in the exo- and endodermis. Composite transport is based on the composite structure of roots. A `fine regulation' results from the activity of water channels (aquaporins) in root cell membranes which is assumed to be under metabolic and other control.  相似文献   

5.
The cellular and molecular basis of a reduction in root water uptake in plants exposed to heavy metals such as zinc (Zn) is poorly studied. The aim of the present study on hydroponically grown barley (Hordeum vulgare) was to test whether any reduction in root hydraulic conductivity (Lp) in response to Zn treatment is accompanied by a reduction in cell Lp and gene expression level of aquaporin (AQP) isoforms. Plants were grown in the presence of 0.25 μM, (control), 0.1 and 1 mM Zn in the root medium and analysed when they were 16–18 days old. Root and cell Lp was determined through exudation and cell pressure probe analyses, respectively, and gene expression of five candidate AQPs was analysed [real time quantitative polymerase chain reaction (PCR)]. Zinc treatments caused significant reductions (25–83%) in transpiration rate, root and shoot fresh weight, surface area and stomatal conductance. Zinc concentrations in tissues increased more than 100‐fold. Root Lp decreased by 24% (0.1 mM Zn) and 58% (1 mM Zn), while cell Lp decreased by 45 and 71%, respectively. Gene expression of AQPs decreased by 14–80%; decreases were statistically significant for HvPIP1;3, HvPIP2;4 and HvPIP2;5. Turgor in root cortex cells was not reduced by Zn treatments. It is concluded that reductions in plant water flow in response to Zn treatment are facilitated through decreases in root (Lp) and shoot (stomata) hydraulics. The decrease in root Lp is facilitated through reductions in cell Lp and AQP gene expression and may also reflect increased suberization in the endodermis.  相似文献   

6.
Hydraulic conductivity of rice roots   总被引:18,自引:0,他引:18  
A pressure chamber and a root pressure probe technique have been used to measure hydraulic conductivities of rice roots (root Lp(r) per m(2) of root surface area). Young plants of two rice (Oryza sativa L.) varieties (an upland variety, cv. Azucena and a lowland variety, cv. IR64) were grown for 31-40 d in 12 h days with 500 micromol m(-2) s(-1) PAR and day/night temperatures of 27 degrees C and 22 degrees C. Root Lp(r) was measured under conditions of steady-state and transient water flow. Different growth conditions (hydroponic and aeroponic culture) did not cause visible differences in root anatomy in either variety. Values of root Lp(r) obtained from hydraulic (hydrostatic) and osmotic water flow were of the order of 10(-8) m s(-1) MPa(-1) and were similar when using the different techniques. In comparison with other herbaceous species, rice roots tended to have a higher hydraulic resistance of the roots per unit root surface area. The data suggest that the low overall hydraulic conductivity of rice roots is caused by the existence of apoplastic barriers in the outer root parts (exodermis and sclerenchymatous (fibre) tissue) and by a strongly developed endodermis rather than by the existence of aerenchyma. According to the composite transport model of the root, the ability to adapt to higher transpirational demands from the shoot should be limited for rice because there were minimal changes in root Lp(r) depending on whether hydrostatic or osmotic forces were acting. It is concluded that this may be one of the reasons why rice suffers from water shortage in the shoot even in flooded fields.  相似文献   

7.
Ranathunge K  Steudle E  Lafitte R 《Planta》2003,217(2):193-205
A new pressure-perfusion technique was used to measure hydraulic and osmotic properties of the outer part of roots (OPR) of 30-day-old rice plants (lowland cultivar: IR64, and upland cultivar: Azucena). The OPR comprised rhizodermis, exodermis, sclerenchyma and one cortical cell layer. The technique involved perfusion of aerenchyma of segments from two different root zones (20-50 mm and 50-100 mm from the tip) at precise rates using aerated nutrient solution. The hydraulic conductivity of the OPR (Lp(OPR)=1.2x10(-6) m s(-1) MPa(-1)) was larger by a factor of 30 than the overall hydraulic conductivity (Lp(r)=4x10(-8) m s(-1) MPa(-1)) as measured by pressure chamber and root pressure probe. Low reflection coefficients were obtained for mannitol and NaCl for the OPR (sigma(sOPR)=0.14 and 0.09, respectively). The diffusional water permeability ( P(dOPR)) estimated from isobaric flow of heavy water was smaller by three orders of magnitude than the hydraulic conductivity (Lp(OPR)/ P(fOPR)). Although detailed root anatomy showed well-defined Casparian bands and suberin lamellae in the exodermis, the findings strongly indicate a predominantly apoplastic water flow in the OPR. The Lp(OPR) of heat-killed root segments increased by a factor of only 2, which is in line with the conclusion of a dominating apoplastic water flow. The hydraulic resistance of the OPR was not limiting the passage of water across the root cylinder. Estimations of the hydraulic properties of aerenchyma suggested that the endodermis was rate-limiting the water flow, although the aerenchyma may contribute to the overall resistance. The resistance of the aerenchyma was relatively low, because mono-layered cortical septa crossing the aerenchyma ('spokes') short-circuited the air space between the stele and the OPR. Spokes form hydraulic bridges that act like wicks. Low diffusional water permeabilities of the OPR suggest that radial oxygen losses from aerenchyma to medium are also low. It is concluded that in rice roots, water uptake and oxygen retention are optimized in such a way that hydraulic water flow can be kept high in the presence of a low efflux of oxygen which is diffusional in nature.  相似文献   

8.
On the basis of recent results with young primary maize roots, a model is proposed for the movement of water across roots. It is shown how the complex, 'composite anatomical structure' of roots results in a 'composite transport' of both water and solutes. Parallel apoplastic, symplastic and transcellular pathways play an important role during the passage of water across the different tissues. These are arranged in series within the root cylinder (epidermis, exodermis, central cortex, endodermis, pericycle stelar parenchyma, and tracheary elements). The contribution of these structures to the root's overall radial hydraulic resistance is examined. It is shown that as soon as early metaxylem vessels mature, the axial (longitudinal) hydraulic resistance within the xylem is usually not rate-limiting. According to the model, there is a rapid exchange of water between parallel radial pathways because, in contrast to solutes such as nutrient ions, water permeates cell membranes readily. The roles of apoplastic barriers (Casparian bands and suberin lamellae) in the root's endo- and exodermis are discussed. The model allows for special characteristics of roots such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients indicate some apoplastic by-passes for water within the root cylinder. For a given root, the model explains the large variability in the hydraulic resistance in terms of a dependence of hydraulic conductivity on the nature and intensity of the driving forces involved to move water. By switching the apoplastic path on or off, the model allows for a regulation of water uptake according to the demands from the shoot. At high rates of transpiration, the apoplastic path will be partially used and the hydraulic resistance of the root will be low, allowing for a rapid uptake of water. On the contrary, at low rates of transpiration such as during the night or during stress conditions (drought, high salinity, nutrient deprivation), the apoplastic path will be less used and the hydraulic resistance will be high. The role of water channels (aquaporins) in the transcellular path is in the fine adjustment of water flow or in the regulation of uptake in older, suberized parts of plant roots lacking a substantial apoplastic component. The composite transport model explains how plants are designed to optimize water uptake according to demands from the shoot and how external factors may influence water passage across roots.  相似文献   

9.
10.
Growth-limiting deficiencies of N or P substantially decrease the hydraulic conductance of cotton (Gossypium hirsutum L.) roots. This shift could result from decreased hydraulic conductivity of cells in the radial flow pathway. A pressure microprobe was used to study water relations of cortical cells in roots of cotton seedlings stressed for N or P. During 10 days of seedling growth on a complete nutrient solution, root cell turgor was stable at 0.4 to 0.5 megapascal, the volumetric elastic modulus increased slowly from 6 to 10 megapascals, and the half-time for water exchange increased from 10 to 15 seconds. In seedlings transferred to N-free solution for 10 days, final values for each of those parameters were approximately doubled. Root cell hydraulic conductivity (cell Lp) was 1.4 × 10−7 meters per second per megapascal at the time of transfer. In the well-nourished controls, cell Lp decreased over 10 days to 38% of the initial value, but in the N-stressed plants it decreased much more sharply, reaching 6% of the initial value after 10 days. Transfer to solutions without P or with an intermediate level of N also decreased cell Lp. The changes in root cell Lp were consistent with nutrient effects on intact-root water relations demonstrated earlier. However, cell Lp was about half that of the intact root, implying that substantial water flow may follow an apoplastic pathway, bypassing the cortical cells from which these values were derived.  相似文献   

11.

Background and Aims

The movement of water through mycorrhizal fungal tissues and between the fungus and roots is little understood. It has been demonstrated that arbuscular mycorrhizal (AM) symbiosis regulates root hydraulic properties, including root hydraulic conductivity. However, it is not clear whether this effect is due to a regulation of root aquaporins (cell-to-cell pathway) or to enhanced apoplastic water flow. Here we measured the relative contributions of the apoplastic versus the cell-to-cell pathway for water movement in roots of AM and non-AM plants.

Methods

We used a combination of two experiments using the apoplastic tracer dye light green SF yellowish and sodium azide as an inhibitor of aquaporin activity. Plant water and physiological status, root hydraulic conductivity and apoplastic water flow were measured.

Key Results

Roots of AM plants enhanced significantly relative apoplastic water flow as compared with non-AM plants and this increase was evident under both well-watered and drought stress conditions. The presence of the AM fungus in the roots of the host plants was able to modulate the switching between apoplastic and cell-to-cell water transport pathways.

Conclusions

The ability of AM plants to switch between water transport pathways could allow a higher flexibility in the response of these plants to water shortage according to the demand from the shoot.  相似文献   

12.
The relative contribution of the apoplastic and cell-to-cell paths to the overall hydraulic conductivity of the outer part of rice roots (LpOPR) was estimated using a pressure perfusion technique for 30-d-old rice plants (lowland cultivar, IR64, and upland cultivar, Azucena). The technique was based on the perfusion of aerenchyma of root segments from two different zones (20-50 mm and 50-100 mm from the root apex) with aerated nutrient solution using precise pump rates. The outer part of roots (OPR) comprised an outermost rhizodermis, an exodermis, sclerenchyma fibre cells, and the innermost unmodified cortical cell layer. No root anatomical differences were observed for the two cultivars used. Development of apoplastic barriers such as Casparian bands and suberin lamellae in the exodermis were highly variable. On average, matured apoplastic barriers were observed at around 50-70 mm from the root apex. Lignification of the exodermis was completed earlier than that of sclerenchyma cells. Radial water flow across the OPR was impeded either by partially blocking off the porous apoplast with China ink particles (diameter 50 nm) or by closing water channels (aquaporins) in cell membranes with 50 micro M HgCl2. The reduction of LpOPR was relatively larger in the presence of an apoplastic blockage with ink ( approximately 30%) than in the presence of the water channel blocker ( approximately 10%) suggesting a relatively larger apoplastic water flow. The reflection coefficient of the OPR (sigmasOPR) for mannitol significantly increased during both treatments. It was larger when pores of the apoplast were closed, but absolute values were low (overall range of sigmasOPR=0.1-0.4), which also suggested a large contribution of the non-selective, apoplastic path to overall water flow. The strongest evidence in favour of a predominantly apoplastic water transport came from the comparison between diffusional (PdOPR, measured with heavy water, HDO) and osmotic water permeability (PfOPR) or hydraulic conductivity (LpOPR). PfOPR was larger by a factor of 600-1400 compared with P(dOPR). The development of OPR along roots resulted in a decrease of PdOPR by a factor of three (segments taken at 20-50 and 50-100 mm from root apex, respectively). Heat-killing of living cells resulted in an increase of PdOPR for both immature (20-50 mm) and mature (50-100 mm) root segments by a factor of two. Even though both pathways (apoplast and cell-to-cell) contributed to the overall water flow, the findings indicate predominantly apoplastic water flow across the OPR, even in the presence of apoplastic barriers. Low diffusional water permeabilities may suggest a low rate of oxygen diffusion across the OPR from aerenchyma to the outer anaerobic soil medium (low PO2OPR). To date, there are no data on PO2OPR. Provisional data of radial oxygen losses (ROL) across the OPR suggest that, unlike water, rice roots efficiently retain oxygen within the aerenchyma. This ability strongly increases as roots/OPR develop.  相似文献   

13.
氮磷亏缺对玉米根系水流导度的影响   总被引:12,自引:0,他引:12  
在人工气候室水培条件下,从单根和整株根系两个层次研究了N、P营养与玉米(Zea mays L.)根系水流导度(root hydraulic conductivity,Lpr)间的关系。结果表明:表型抗旱的杂交种F1代户单4号和母本天四的单根水导和整株根系水导均高于不抗旱的父本478,其中天四的单根水导最高,而户单4号的整株根系水导最高。N、P亏缺均使玉米单根水导和整株根系水导降低,但与N亏块相比,P亏缺的植株具有较高的整株根系水导和较低的单根水导。整株根系的水导更能反映植物根系的输水性能。  相似文献   

14.
Hose E  Steudle E  Hartung W 《Planta》2000,211(6):874-882
Using root- and cell-pressure probes, the effects of the stress hormone abscisic acid (ABA) on the water-transport properties of maize roots (Zea mays L.) were examined in order to work out dose and time responses for root hydraulic conductivity. Abscisic acid applied at concentrations of 100–1,000 nM increased the hydraulic conductivity of excised maize roots both at the organ (root Lpr: factor of 3–4) and the root cell level (cell Lp: factor of 7–27). Effects on the root cortical cells were more pronounced than at the organ level. From the results it was concluded that ABA acts at the plasmalemma, presumably by an interaction with water channels. Abscisic acid therefore facilitated the cell-to-cell component of transport of water across the root cylinder. Effects on cell Lp were transient and highly specific for the undissociated (+)-cis-trans-ABA. The stress hormone ABA facilitates water uptake into roots as soils start drying, especially under non-transpiring conditions, when the apoplastic path of water transport is largely excluded. Received: 26 February 2000 / Accepted: 17 August 2000  相似文献   

15.
The role of root temperature T(R) in regulating the water-uptake capability of rice roots and the possible relationship with aquaporins were investigated. The root hydraulic conductivity Lp(r) decreased with decreasing T(R) in a measured temperature range between 10 degrees C and 35 degrees C. A single break point (T(RC) = 15 degrees C) was detected in the Arrhenius plot for steady-state Lp(r). The temperature dependency of Lp(r) represented by activation energy was low (28 kJ mol(-1)) above T(RC), but the value is slightly higher than that for the water viscosity. Addition of an aquaporin inhibitor, HgCl(2), into root medium reduced osmotic exudation by 97% at 25 degrees C, signifying that aquaporins play a major role in regulating water uptake. Below T(RC), Lp(r) declined precipitously with decreasing T(R) (E(a) = 204 kJ mol(-1)). When T(R) is higher than T(RC), the transient time for reaching the steady-state of Lp(r) after the immediate change in T(R) (from 25 degrees C) was estimated as 10 min, while it was prolonged up to 2-3 h when T(R) < T(RC). The Lp(r) was completely recovered to the initial levels when T(R) was returned back to 25 degrees C. Immunoblot analysis using specific antibodies for the major aquaporin members of PIPs and TIPs in rice roots revealed that there were no significant changes in the abundance of aquaporins during 5 h of low temperature treatment. Considering this result and the significant inhibition of water-uptake by the aquaporin inhibitor, we hypothesize that the decrease in Lp(r) when T(R) < T(RC) was regulated by the activity of aquaporins rather than their abundance.  相似文献   

16.
17.
Although it is implied that suberized apoplastic barriers of roots negatively correlate with water and solute permeabilities, direct transport measurements across roots with altered amounts and compositions of aliphatic suberin are scarce. In the present study, hydroponically grown Arabidopsis wild types (Col8 and Col0) and different suberin mutants with altered amounts and/or compositions (horst, esb1-1, and esb1-2) were used to test this hypothesis. Detailed histochemical studies revealed late development of Casparian bands and suberin lamellae in the horst mutant compared with wild types and esb mutants. Suberin analysis with gas chromatography and mass spectrometry (GC-MS) showed that the horst mutant had ~33% lower amounts of aliphatic monomers than Col8 and Col0. In contrast, enhanced suberin mutants (esb1-1 and esb1-2) had twice the amount of suberin as the wild types. Correlative permeability measurements, which were carried out for the first time with a root pressure probe for Arabidopsis, revealed that the hydraulic conductivity (Lp(r)) and NaCl permeability (P(sr)) of the whole root system of the horst mutant were markedly greater than in the respective wild types. This was reflected by the total amounts of aliphatic suberin determined in the roots. However, increased levels of aliphatic suberin in esb mutants failed to reduce either water or NaCl permeabilities below those of the wild types. It was concluded that the simple view and the conventional assumption that the amount of root suberin negatively correlates with permeability may not always be true. The aliphatic monomer arrangement in the suberin biopolymer and its microstructure also play a role in apoplastic barrier formation.  相似文献   

18.
水分吸收过程是根系重要的生理过程。水孔蛋白在根系水分径向运输中起着重要的作用,根系水流导度(Lp)的测定是研究水孔蛋白的重要途径。该研究采用压力流的方法,对相同生长条件下的水曲柳(Fraxinus mandshurica)幼苗根系进行研究,测定了根系在去离子水和不同浓度NH4NO3溶液中的Lp。结果表明:未经处理的水曲柳幼苗根系,Lp随NH4NO3浓度的增加而上升,而且NH4NO3溶液中的Lp比去离子水中的Lp平均高77%;经HgCl2处理后,水曲柳幼苗根系的Lp仍然随NH4NO3浓度的增加而增大,但是根系Lp在去离子水下降了22%,而在NH4NO3溶液中下降了68%,与以前的研究相比发现,经HgCl2处理后,以营养液为吸水基质的根系Lp的降低值普遍高于以去离子水为基质的试验。因此,基质中养分离子的存在对根系中水孔蛋白活性产生了重要的影响,进而影响根系水分的吸收过程。  相似文献   

19.
Aspen (Populus tremuloides Michx.) roots were treated with cycloheximide, a protein synthesis inhibitor, to examine the role of protein synthesis in root water transport and plant water relations. Within less than 30 min following root application, cycloheximide inhibited steady‐state root water flow rates and 1 h after the application of 1 mm cycloheximide, root hydraulic conductivity had decreased by 85% compared with control roots. However, stomatal conductance showed a significant inhibition only after 2 h following cycloheximide treatment. The reduction in root hydraulic conductivity was accompanied by an almost three‐fold increase in the apoplastic water flow ratio as determined by the trisodium 3‐hydroxy‐5,8,10‐pyrenesulphonate tracer dye. Cycloheximide‐treated roots showed a decrease in the immunostaining intensity of a 32 kDa microsomal protein band that immunoreacted with the AnthPIP1; 1 antibody suggesting a decrease in the membrane aquaporin expression. These changes occurred without severe metabolic disruptions as measured by root respiration. The results point to the importance of protein‐mediated transport in roots and the rapidity of response suggests that protein synthesis may be used as a principal regulatory mechanism in root water transport in aspen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号