首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The second messenger 3′–5′-cyclic diguanylic acid (c-di-GMP) promotes biofilm formation, and c-di-GMP is synthesized by diguanylate cyclases (characterized by a GGDEF domain) and degraded by phosphodiesterases. Here, we evaluated the effect of the 12 E. coli GGDEF-only proteins on biofilm formation and motility. Deletions of the genes encoding the GGDEF proteins YeaI, YedQ, YfiN, YeaJ, and YneF increased swimming motility as expected for strains with reduced c-di-GMP. Alanine substitution in the EGEVF motif of YeaI abolished its impact on swimming motility. In addition, extracellular DNA (eDNA) was increased as expected for the deletions of yeaI (tenfold), yedQ (1.8-fold), and yfiN (3.2-fold). As a result of the significantly enhanced motility, but contrary to current models of decreased biofilm formation with decreased diguanylate cyclase activity, early biofilm formation increased dramatically for the deletions of yeaI (30-fold), yedQ (12-fold), and yfiN (18-fold). Our results indicate that YeaI, YedQ, and YfiN are active diguanylate cyclases that reduce motility, eDNA, and early biofilm formation and contrary to the current paradigm, the results indicate that c-di-GMP levels should be reduced, not increased, for initial biofilm formation so c-di-GMP levels must be regulated in a temporal fashion in biofilms.  相似文献   

2.
大肠杆菌生物膜是由聚集于特定介质上的大肠杆菌菌体细胞相互黏附并分泌胞外基质聚合物(extracellular polymeric substances,EPS)而产生的一种结构复杂的膜状聚集物。感染宿主后的致病性大肠杆菌在形成生物膜后会极大地逃避免疫系统以及环境中各种有害因素对其的影响,对宿主造成持续甚至致命的伤害。环二鸟苷酸(cyclic diguanosine monophosphate,c-di-GMP)是广泛存在于细菌中的第二信使,在调节生物膜形成过程中起到至关重要的作用。基于此,本文对近些年来有关c-di-GMP对大肠杆菌生物膜形成过程中菌体的运动、黏附以及EPS产生机制的研究进行了综述,以期为从c-di-GMP角度抑制大肠杆菌生物膜提供依据和思路。  相似文献   

3.
Commensal and pathogenic Escherichia coli adherence to host and environmental surfaces is mediated by a variety of adhesins. Although extensively studied as a model bacterium, 34% of the genes in the E. coli K‐12 genome have no known function. We hypothesized that some of them may correspond to functional adhesins. We characterized E. coli K‐12 ycb, ybg, yfc, yad, yra, sfm and yeh operons, which display sequence and organizational homologies to type 1 fimbriae exported by the chaperone/usher pathway. We showed that, although these operons are poorly expressed under laboratory conditions, six of them are nevertheless functional when expressed, and promote adhesion to abiotic and/or epithelial cell surfaces. While the studied fimbriae display different binding specificities, we obtained evidence of synergy/interference with other adhesins such as Ag43 or type 1 fimbriae. We showed that their expression is under the negative control of H‐NS and, except for yad, subjected to cAMP receptor protein‐mediated activation and carbon catabolite repression. These results therefore demonstrate that ycb, yfc, yad, yra, sfm and yeh operons encode cryptic but functional fimbriae adhesins whose expression following environmental modifications could contribute to E. coli's ability to adhere to and colonize a wide diversity of surfaces in its various ecological niches.  相似文献   

4.
Aim: To investigate the effect of curli expression on cell hydrophobicity, biofilm formation and attachment to cut and intact fresh produce surfaces. Methods and Results: Five Escherichia coli O157:H7 strains were evaluated for curli expression, hydrophobicity, biofilm formation and attachment to intact and cut fresh produce (cabbage, iceberg lettuce and Romaine lettuce) leaves. Biofilm formation was stronger when E. coli O157:H7 were grown in diluted tryptic soy broth (1 : 10). In general, strong curli‐expressing E. coli O157:H7 strains 4406 and 4407 were more hydrophobic and attached to cabbage and iceberg lettuce surfaces at significantly higher numbers than other weak curli‐expressing strains. Overall, E. coli O157:H7 populations attached to cabbage and lettuce (iceberg and Romaine) surfaces were similar (P > 0·05), indicating produce surfaces did not affect (P < 0·05) bacterial attachment. All E. coli O157:H7 strains attached rapidly on intact and cut produce surfaces. Escherichia coli O157:H7 attached preferentially to cut surfaces of all produce types; however, the difference between E. coli O157:H7 populations attached to intact and cut surfaces was not significant (P > 0·05) in most cases. Escherichia coli O157:H7 attachment and attachment strength (SR) to intact and cut produce surfaces increased with time. Conclusions: Curli‐producing E. coli O157:H7 strains attach at higher numbers to produce surfaces. Increased attachment of E. coli O157:H7 on cut surfaces emphasizes the need for an effective produce wash to kill E. coli O157:H7 on produce. Significance and Impact of the Study: Understanding the attachment mechanisms of E. coli O157:H7 to produce surfaces will aid in developing new intervention strategies to prevent produce outbreaks.  相似文献   

5.
C-di-GMP is a key signalling molecule which impacts bacterial motility and biofilm formation and is formed by the condensation of two GTP molecules by a diguanylate cyclase. We here describe the identification and characterization of a family of bacteriophage-encoded peptides that directly impact c-di-GMP signalling in Pseudomonas aeruginosa. These phage proteins target Pseudomonas diguanylate cyclase YfiN by direct protein interaction (termed YIPs, YfiN Interacting Peptides). YIPs induce an increase of c-di-GMP production in the host cell, resulting in a decrease in motility and an increase in biofilm mass in P. aeruginosa. A dynamic analysis of the biofilm morphology indicates a denser biofilm structure after induction of the phage protein. This intracellular signalling interference strategy by a lytic phage constitutes an unexplored phage-based mechanism of metabolic regulation and could potentially serve as inspiration for the development of molecules that interfere with biofilm formation in P. aeruginosa and other pathogens.  相似文献   

6.
This work reports on a simple, robust and scientifically sound method to develop surfaces able to reduce microbial attachment and biofilm development, with possible applications in medicine, dentistry, food processing, or water treatment. Anodic surfaces with cylindrical nanopores 15 to 100 nm in diameter were manufactured and incubated with Escherichia coli ATCC 25922 and Listeria innocua. Surfaces with 15 and 25 nm pore diameters significantly repressed attachment and biofilm formation. Surface–bacteria interaction forces calculated using the extended Derjaguin Landau Verwey-Overbeek (XDLVO) theory indicate that reduction in attachment and biofilm formation is due to a synergy between electrostatic repulsion and surface effective free energy. An attachment study using E. coli K12 strains unable to express appendages also suggests that the small-pore surfaces may inhibit flagella-dependent attachment. These results can have immediate, far-reaching implications and commercial applications, with substantial benefits for human health and life.  相似文献   

7.
8.

Background  

Catheter-associated urinary tract infection (CAUTI) is the most common nosocomial infection in the United States and is caused by a range of uropathogens. Biofilm formation by uropathogens that cause CAUTI is often mediated by cell surface structures such as fimbriae. In this study, we characterised the genes encoding type 3 fimbriae from CAUTI strains of Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Citrobacter koseri and Citrobacter freundii.  相似文献   

9.
Urinary tract infections caused by Escherichia coli are very common health problem in the developed countries. The virulence of the uropathogenic E. coli Dr+ IH11128 is determined by Dr fimbriae, which are homopolymeric structures composed of DraE subunits with the DraD protein capping the fiber. In this study, we have analyzed the structural and biochemical properties of biofilms developed by E. coli strains expressing Dr fimbriae with or without the DraD tip subunit and the surface-exposed DraD protein. We have also demonstrated that these E. coli strains form biofilms on an abiotic surface in a nutrient-dependent fashion. We present evidence that Dr fimbriae are necessary during the first stage of bacterial interaction with the abiotic surface. In addition, we reveal that the DraD alone is also sufficient for the initial surface attachment at an even higher level than Dr fimbriae and that chloramphenicol is able to reduce the normal attachment of the analyzed E. coli. The action of chloramphenicol also shows that protein synthesis is required for the early events of biofilm formation. Additionally, we have identified reduced exopolysaccharide coverage in E. coli that express only Dr fimbrial polyadhesins at the cell surface with or without the DraD capping subunit.  相似文献   

10.
Cells of Lactobacilli co-aggregated with Escherichia coli K-12 cells to form co-aggregates under mixed-culture conditions at 37?°C for 24?h. Co-aggregation was inhibited by sodium dodecyl sulfate but not by protease. E. coli deletion mutants of fimbriae formation and lipopolysaccharide (LPS) formation did not co-aggregate with Lactobacilli. These results showed that fimbriae and LPS are necessary for co-aggregation between Lactobacilli and E. coli.  相似文献   

11.
12.
The second messenger cyclic diguanylic acid (c-di-GMP) is implicated in key lifestyle decisions of bacteria, including biofilm formation and changes in motility and virulence. Some challenges in deciphering the physiological roles of c-di-GMP are the limited knowledge about the cellular targets of c-di-GMP, the signals that control its levels, and the proportion of free cellular c-di-GMP, if any. Here, we identify the target and the regulatory signal for a c-di-GMP-responsive Escherichia coli ribonucleoprotein complex. We show that a direct c-di-GMP target in E. coli is polynucleotide phosphorylase (PNPase), an important enzyme in RNA metabolism that serves as a 3′ polyribonucleotide polymerase or a 3′-to-5′ exoribonuclease. We further show that a complex of polynucleotide phosphorylase with the direct oxygen sensors DosC and DosP can perform oxygen-dependent RNA processing. We conclude that c-di-GMP can mediate signal-dependent RNA processing and that macromolecular complexes can compartmentalize c-di-GMP signaling.  相似文献   

13.
细菌通过调控第二信使环二鸟苷酸(cyclic diguanylate, c-di-GMP)而促进其适应环境、存活及致病。【目的】本研究旨在建立有效的c-di-GMP水平检测方法,为大肠杆菌内c-di-GMP水平检测提供便利条件。【方法】根据c-di-GMP核糖开关受体的调控方式、荧光报告基因等设计引物,通过重叠聚合酶链反应(overlap polymerase chain reaction, overlap PCR)和同源重组酶构成基于核糖开关的双荧光素报告质粒pAmCherry-Vc2EGFP(pACVcE),然后构建c-di-GMP代谢基因过表达菌株和缺失菌株,利用pACVcE检测大肠杆菌内c-di-GMP水平。【结果】OverlapPCR扩增产物与目的靶序列一致,测序结果证明pACVcE序列正确。表达c-di-GMP合成酶DgcZ的大肠杆菌胞内c-di-GMP水平显著升高,而表达c-di-GMP降解酶PdeK的大肠杆菌胞内c-di-GMP水平显著降低。禽致病性大肠杆菌的胞内c-di-GMP水平检测发现c-di-GMP降解酶基因pdeK缺失后胞内的c-di-GMP水平显著升高。【结...  相似文献   

14.
In many bacteria, including Vibrio cholerae, cyclic dimeric guanosine monophosphate (c-di-GMP) controls the motile to biofilm life style switch. Yet, little is known about how this occurs. In this study, we report that changes in c-di-GMP concentration impact the biosynthesis of the MshA pili, resulting in altered motility and biofilm phenotypes in V. cholerae. Previously, we reported that cdgJ encodes a c-di-GMP phosphodiesterase and a ΔcdgJ mutant has reduced motility and enhanced biofilm formation. Here we show that loss of the genes required for the mannose-sensitive hemagglutinin (MshA) pilus biogenesis restores motility in the ΔcdgJ mutant. Mutations of the predicted ATPase proteins mshE or pilT, responsible for polymerizing and depolymerizing MshA pili, impair near surface motility behavior and initial surface attachment dynamics. A ΔcdgJ mutant has enhanced surface attachment, while the ΔcdgJmshA mutant phenocopies the high motility and low attachment phenotypes observed in a ΔmshA strain. Elevated concentrations of c-di-GMP enhance surface MshA pilus production. MshE, but not PilT binds c-di-GMP directly, establishing a mechanism for c-di-GMP signaling input in MshA pilus production. Collectively, our results suggest that the dynamic nature of the MshA pilus established by the assembly and disassembly of pilin subunits is essential for transition from the motile to sessile lifestyle and that c-di-GMP affects MshA pilus assembly and function through direct interactions with the MshE ATPase.  相似文献   

15.
Cyclic di-GMP (c-di-GMP), a novel secondary signalling molecule present in most bacteria, controls transition between motility and sessility. In Salmonella enterica serovar Typhimurium ( S. typhimurium ) high c-di-GMP concentrations favour the expression of a biofilm state through expression of the master regulator CsgD. In this work, we investigate the effect of c-di-GMP signalling on virulence phenotypes of S. typhimurium. After saturation of the cell with c-di-GMP by overexpression of a di-guanylate cyclase, we studied invasion and induction of a pro-inflammatory cytokine in epithelial cells, basic phenotypes that are major determinants of S. typhimurium virulence. Elevated c-di-GMP had a profound effect on invasion into and IL-8 production by the gastrointestinal epithelial cell line HT-29. Invasion was mainly inhibited through CsgD and the extracellular matrix component cellulose, while inhibition of the pro-inflammatory response occurred through CsgD, which inhibited the secretion of monomeric flagellin. Our results suggest that transition between biofilm formation and virulence in S. typhimurium at the epithelial cell lining is mediated by c-di-GMP signalling through CsgD and cellulose expression.  相似文献   

16.
Saliva is known to modulate the adhesion of bacteria in the oral cavity. The present work was performed to assess the effect of salivary components on the adhesion of Escherichia coli to a model oral surface. Several genetically engineered E. coli strains were used to examine the role of type 1 fimbriation in the interaction of these strains with salivary components in solution or adsorbed to hydroxyapatite. High (MG1) and low (MG2) molecular weight salivary mucins, and secretory immunoglobulin A (sIgA), were found to interact with the surface of E. coli, and these interactions were independent of the expression of fimbriae or capsule. In contrast, fimbriated strains of E. coli adhered to a greater extent to saliva-coated synthetic hydroxyapatite (HAP) than did nonfimbriated strains. Testing of salivary components separated by gel filtration chromatography revealed that only high-molecular-weight components promoted adhesion of E. coli to HAP. Additional studies found that purified MG2 and sIgA promoted the adhesion of E. coli to HAP. Expression of type 1 fimbriae enhanced adhesion, while mannose inhibited adhesion of fimbriated strains, to saliva-coated HAP and to HAP coated with MG2 and sIgA. We conclude that salivary MG2 and sIgA may provide receptors for the adhesion of type 1 fimbriated E. coli to oral surfaces. Received: 10 February 1996 / Accepted: 11 March 1996  相似文献   

17.
Cyclic di-GMP is a conserved signaling molecule regulating the transitions between motile and sessile modes of growth in a variety of bacterial species. Recent evidence suggests that Pseudomonas species harbor separate intracellular pools of c-di-GMP to control different phenotypic outputs associated with motility, attachment, and biofilm formation, with multiple diguanylate cyclases (DGCs) playing distinct roles in these processes, yet little is known about the potential conservation of functional DGCs across Pseudomonas species. In the present study, we demonstrate that the P. aeruginosa homolog of the P. fluorescens DGC GcbA involved in promoting biofilm formation via regulation of swimming motility likewise synthesizes c-di-GMP to regulate surface attachment via modulation of motility, however, without affecting subsequent biofilm formation. P. aeruginosa GcbA was found to regulate flagellum-driven motility by suppressing flagellar reversal rates in a manner independent of viscosity, surface hardness, and polysaccharide production. P. fluorescens GcbA was found to be functional in P. aeruginosa and was capable of restoring phenotypes associated with inactivation of gcbA in P. aeruginosa to wild-type levels. Motility and attachment of a gcbA mutant strain could be restored to wild-type levels via overexpression of the small regulatory RNA RsmZ. Furthermore, epistasis analysis revealed that while both contribute to the regulation of initial surface attachment and flagellum-driven motility, GcbA and the phosphodiesterase DipA act within different signaling networks to regulate these processes. Our findings expand the complexity of c-di-GMP signaling in the regulation of the motile-sessile switch by providing yet another potential link to the Gac/Rsm network and suggesting that distinct c-di-GMP-modulating signaling pathways can regulate a single phenotypic output.  相似文献   

18.
【背景】铜绿假单胞菌为革兰氏阴性杆菌,是医院感染的常见条件致病菌之一。广泛存在于细菌中的第二信使分子环鸟苷二磷酸(cyclic-di-guanosine monophosphate,c-di-GMP)对细菌生理生化功能具有重要的调节作用。铜绿假单胞菌PAO1中存在参与c-di-GMP代谢的基因PA2072。【目的】探讨铜绿假单胞菌PAO1中c-di-GMP代谢相关基因PA2072的生物学功能。【方法】运用PCR及分子克隆技术构建PA2072基因及各结构域的自杀载体,运用基因敲除方法获取PA2072基因的3个突变株;利用泳动性(swimming)、蜂群运动(swarming)、蹭行运动(twitching)和生物膜定量实验对细菌进行初步的表型分析,进一步通过刚果红染色法对菌株进行分析。【结果】成功构建PA2072基因敲除突变菌株及回补菌株;生物膜定量结果发现基因PA2072的敲除会影响细菌生物膜的形成,PA2072蛋白的不同结构域对生物膜的合成也起到了重要作用;细菌运动能力检测中发现PA2072相关基因的敲除对细菌运动能力也有一定影响。刚果红平板检测结果显示,与野生型PAO1菌株相比,P...  相似文献   

19.
Biofilm formation is a complex developmental process regulated by multiple environmental signals. In addition to other nutrients, the transition metal iron can also regulate biofilm formation. Iron-dependent regulation of biofilm formation varies by bacterial species, and the exact regulatory pathways that control iron-dependent biofilm formation are often unknown or only partially characterized. To address this gap in our knowledge, we examined the role of iron availability in regulating biofilm formation in Escherichia coli. The results indicate that biofilm formation is repressed under low-iron conditions in E. coli. Furthermore, a key iron regulator, IscR, controls biofilm formation in response to changes in cellular Fe-S homeostasis. IscR regulates the FimE recombinase to control expression of type I fimbriae in E. coli. We propose that iron-dependent regulation of FimE via IscR leads to decreased surface attachment and biofilm dispersal under iron-limiting conditions.  相似文献   

20.
The flagella master regulatory gene flhDC of Yersinia pseudotuberculosis serotype III (YPIII) was mutated by deleting the middle region and replaced by a tetracycline resistant gene, and the subsequent mutant strain named YPIIIΔflhDC was obtained. Swimming assay showed that the swimming motility of the mutant strain was completely abolished. The promoter region of the flagella second-class regulatory gene fliA was fused with the lux box, and was conjugated with the mutant and the parent strains respectively for the first cross. LUCY assay result demonstrated that flhDC regulated the expression of fliA in YPIII as reported in E. coli. Biofilm formation of the mutant strain on abiotic and biotic surfaces was observed and quantified. The results showed that mutation of flhDC decreased biofilm formation on both abiotic and biotic surfaces, and abated the infection on Caenorhabdtis elegans. Our results suggest that mutation of the flagella master regulatory gene flhDC not only abolished the swimming motility, but also affected biofilm formation of YPIII on different surfaces. The new function of flhDC identified in this study provides a novel viewpoint for the control of bacterial biofilm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号