首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
植物对不利环境的适应依赖于将外部胁迫信号传递到内部信号通路中,在进化过程中形成一系列的胁迫响应机制。其中,油菜素内酯(brassinosteroids, BRs)是一种类固醇激素,广泛参与植物生长发育和逆境响应过程。BRs被包括受体BRI1和共受体BAK1在内的细胞表面受体感知,继而触发信号级联,导致蛋白激酶BIN2的抑制和转录因子BES1/BZR1的激活,BES1/BZR1可直接调控数千个下游响应基因的表达。在模式植物拟南芥中的研究表明,BR的生物合成和信号转导通路成员,特别是BIN2和其下游的转录因子BES1/BZR1,可以被各种环境因子广泛地调节。本文系统总结了BR相关的最新研究进展,对BR的生物合成和信号转导是如何被复杂的环境因子所调节,以及BR与环境因子如何协同调控作物重要农艺性状、冷胁迫和盐胁迫的响应进行了综述。  相似文献   

2.
3.
The effect of 24-epibrassinolide and 28-homobrassinolide on the inhibitionof germination and seedling growth of rice (Oryza sativa) induced bysalinity stress was studied. Brassinosteroids were found to reverse theinhibitory effect on germination and seedling growth. The activation ofseedling growth by brassinosteroids under salinity stress was associatedwith enhanced levels of nucleic acids and soluble proteins.  相似文献   

4.
为揭示油菜素甾醇类化合物提高作物耐盐的效应和机理,研究了10-11、10-10、10-9、10-8、10-7、10-6、10-5 mol/L 2,4-表油菜素内酯(EBL)浸种处理对0、50、100、150、175 mmol/L NaCl胁迫7 d的番茄种子萌发、生长、溶质积累、抗氧化代谢的影响。结果显示:NaCl浓度越高的盐胁迫下,10-9 mol/L EBL浸种可体现出越显著的促进番茄种子萌发的效应;在所有处理下,EBL浸种浓度过高,即10-6、10-5 mol/L EBL,均表现出对种子萌发的抑制效应。盐胁迫下种子萌发后,一定浓度的EBL浸种可表现出明显的增加种子胚根和下胚轴长,提高萌发种子鲜重和种子活力指数,其中10-9 mol/L EBL浸种处理促进效果最适;EBL浸种浓度过高,则表现出抑制效应。150 mmol/L NaCl胁迫或非盐胁迫下,10-9 mol/L EBL浸种均可降低萌发种子体内的O2·-、H2O2、丙二醛(MDA)和脯氨酸(Pro)含量;盐胁迫下,10-9 mol/L EBL浸种可显著提高萌发种子可溶性糖(SS)和可溶性蛋白(SP)的含量。150 mmol/L NaCl胁迫或非盐胁迫下,10-9 mol/L EBL处理可不同程度促进番茄种苗超氧化物歧化酶(SOD)和过氧化物酶(POD)活性的上升。综上所述,盐胁迫下,一定浓度范围内的EBL浸种可明显促进番茄种子萌发或成苗,其中以10-9 mol/L EBL浸种的效果最好,主要是因为EBL施用可积极促进番茄种子萌发中物质转化,SS和SP等溶质积累增多,增强其渗透调节能力;同时SOD和POD酶活增强,缓解盐胁迫导致番茄种子萌发中的次生氧化胁迫。  相似文献   

5.
6.
7.
Biosynthesis and metabolism of brassinosteroids   总被引:4,自引:0,他引:4  
Natural brassinosteroids so far identified from various plant species include biosynthetic congeners of brassinolide, such as cathasterone, teasterone, 3-dehydroteasterone, typhasterol and castasterone as well as another series of 6-deoxoteasterone, 3-dehydro-6-deoxoteasterone, 6-deoxotyphasterol and 6-deoxocastasterone. Using cell culture system of Catharanthus roseus , the outlines of biosynthetic pathways of brassinolide, via plant sterol of campesterol, have now been demonstrated. There are two pathways, named early C6-oxidation pathway and late C6-oxidation pathway, both of which would be operating in wide varieties of plants. Metabolic studies with various plant systems revealed multiple paths of metabolism such as hydroxylation, epimerization, side chain cleavage, reduction and conjugation with glucose and fatty acids. Recent progress of biosynthesis and metabolism of brassinosteroids is described.  相似文献   

8.
生物炭调控盐胁迫下水稻幼苗耐盐性能   总被引:1,自引:0,他引:1  
土壤盐渍化降低土壤生产力.探索生物炭对盐胁迫下水稻幼苗耐盐性能的影响,对调控盐渍区水稻生产潜力具有重要意义.本研究通过生物炭介入盐胁迫稻田土壤的盆栽试验,调查了生物炭对盐胁迫下土壤环境和水稻幼苗耐盐性能的影响.盐胁迫设置4个水平,分别为0 g NaCl·kg-1土(S0),1 g NaCl·kg-1土(S1),2 g ...  相似文献   

9.
Brassinosteroids are part of the hormonal network that regulates growth processes and stress responses in plants. There is evidence for a similar hormonal network in microalgae. In the present study, six microalgae (Chlorococcum ellipsoideum, Gyoerffyana humicola, Nautococcus mamillatus, Acutodesmus acuminatus, Protococcus viridis and Chlorella vulgaris) were subjected to salt and low temperature stress with the addition of 36 g l–1 NaCl and transfer from 25°C to 15°C. There was a rapid response to salt stress with the brassinosteroid content (mainly castasterone with lower amounts of brassinolide, homocastasterone and typhasterol) increasing within 30 min of the salt treatment and remaining at these elevated levels after 7 h. The decrease in temperature had little effect on the brassinosteroid content. This was the first study to show that endogenous brassinosteroids increase in response to abiotic stress in a number of microalgae species.  相似文献   

10.
11.
12.
任艳芳  何俊瑜  杨军  韦愿娟 《生态学报》2019,39(20):7745-7756
以小白菜"甜脆青"为试材,研究不同浓度(5、10、25、50和100 mmol/L)过氧化氢(H2O2)浸种处理对100 mmol/L NaCl胁迫下小白菜(Brassica chinensis L.)种子萌发、幼苗生长及生理特性的影响。结果表明:100 mmol/L NaCl胁迫明显抑制小白菜种子的萌发状况和幼苗生长,发芽势、发芽指数、活力指数及幼苗根和芽长度和鲜重均明显降低,根和芽中CAT的活性及K+含量明显受到抑制,渗透调节物质、活性氧和MDA含量显著增加。不同浓度H2O2浸种处理提高了NaCl胁迫下小白菜种子发芽势、发芽指数和活力指数,促进小白菜根和芽的生长,增强了NaCl胁迫下根和芽中SOD、CAT和APX的活性及K+含量,降低O2产生速率及H2O2和MDA含量,进一步促进脯氨酸和可溶性糖含量的增加,降低体内Na+含量。其中以10 mmol/L H2O2处理缓解盐胁迫效果最好,明显缓解NaCl胁迫对小白菜种子萌发和幼苗生长的抑制。  相似文献   

13.
14.
The biological, morphological and biochemical characteristics which define plant cancer cells at the end of a neoplasic progression in the absence of pathogens and which distinguish them from tumorous cells are summarized. Such plant cancer cells have in common with animal cancer cells many metabolic disturbances. The present paper reviews the biochemical changes in nitrogen, carbon, sugar and heme metabolisms which contribute to polyamine (PAs) accumulation. It indicates how these changes are interconnected and even form between each other biochemical cycles which likely maintain these cells in their irreversible state. The role of these cycles in the maintenance of such cells under a probable permanent oxidative stress is debated.  相似文献   

15.
Calcium serves as a critical messenger in many adaptation and developmental processes. Cellular calcium signals are detected and transmitted by sensor molecules such as calcium-binding proteins. In plants, the calcineurin B-like protein (CBL) family represents a unique group of calcium sensors and plays a key role in decoding calcium transients by specifically interacting with and regulating a family of protein kinases (CIPKs). We report here that the CBL protein CBL10 functions as a crucial regulator of salt tolerance in Arabidopsis. Cbl10 mutant plants exhibited significant growth defects and showed hypersensitive cell death in leaf tissues under high-salt conditions. Interestingly, the Na(+) content of the cbl10 mutant, unlike other salt-sensitive mutants identified thus far, was significantly lower than in the wild type under either normal or high-salt conditions, suggesting that CBL10 mediates a novel Ca(2+)-signaling pathway for salt tolerance. Indeed, the CBL10 protein physically interacts with the salt-tolerance factor CIPK24 (SOS2), and the CBL10-CIPK24 (SOS2) complex is associated with the vacuolar compartments that are responsible for salt storage and detoxification in plant cells. These findings suggest that CBL10 and CIPK24 (SOS2) constitute a novel salt-tolerance pathway that regulates the sequestration/compartmentalization of Na(+) in plant cells. Because CIPK24 (SOS2) also interacts with CBL4 (SOS3) and regulates salt export across the plasma membrane, our study identifies CIPK24 (SOS2) as a multi-functional protein kinase that regulates different aspects of salt tolerance by interacting with distinct CBL calcium sensors.  相似文献   

16.
Mitogen-activated protein kinase (MAPK) is activated by various biotic and abiotic stresses. Salt stress induces two well-characterized MAPK activating signaling molecules, phosphatidic acid (PA) via phospholipase D and phospholipase C, and reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase. In our previous study, the activity of soybean MAPK, GMK1 was strongly induced within 5 min of 300 mM NaCl treatment and this early activity was regulated by PA. In this study, we focused on the regulation of GMK1 at the later stage of the salt stress, because its activity was strongly persistent for up to 30 min. H2O2 activated GMK1 even in the presence of PA generation inhibitors, but GMK1 activity was greatly decreased in the presence of diphenyleneiodonium, an inhibitor of NADPH-oxidase after 5 min of the treatment. On the contrary, the n-butanol and neomycin reduced GMK1 activity within 5 min of the treatment. Thus, GMK1 activity may be sustained by H2O2 10 min after the treatment. Further, GMK1 was translocated into the nucleus 60 min after NaCl treatment. In the relationship between GMK1 and ROS generation, ROS generation was reduced by SB202190, a MAPK inhibitor, but was increased in protoplast overexpressing TESD-GMKK1. However, these effects were occurred at prolonged time of NaCl treatment. These data suggest that GMK1 indirectly regulates ROS generation. Taken together, we propose that soybean GMK1 is dually regulated by PA and H2O2 at a time dependant manner and translocated to the nucleus by the salt stress signal.  相似文献   

17.
外源H2O2对盐胁迫下小麦幼苗生理指标的影响   总被引:2,自引:0,他引:2  
以‘郑麦-004’小麦幼苗为供试材料,采用Hoagland营养液培养方法,通过添加H2O2的清除剂过氧化氢酶(CAT)和抗坏血酸(ASA),研究0.05μmol/L外源H2O2处理对150mmol/L NaCl胁迫下小麦幼苗生长和抗氧化系统活性的影响,探讨低浓度外源H2O2对盐胁迫下小麦幼苗伤害的防护作用及其生理机制。结果显示:外源H2O2能缓解盐胁迫对小麦幼苗生长的抑制效应,降低丙二醛(MDA)含量和超氧自由基(O2.-)的产生速率,使小麦幼苗的株高、根长和干重均显著增加,并能提高超氧化物歧化酶(SOD)、过氧化物酶(POD)、CAT、抗坏血酸氧化酶(APX)等保护酶活性和抗氧化物质谷胱甘肽(GSH)的含量;而H2O2清除剂(CAT和AsA)能够逆转外源H2O2对盐胁迫下小麦幼苗生长的促进作用。研究表明,低浓度外源H2O2处理能促进小麦幼苗中的酶类和非酶类抗氧化剂的产生,减少脂质过氧化物的含量,提高小麦幼苗的耐盐性。  相似文献   

18.
19.
We examined the effects of brassinosteroids on Arabidopsis thaliana (L.) Henyh. ecotype Columbia in order to develop a model system for studying gene regulation by plant steroids. Submicromolar concentrations of two brassinosteroids, brassinolide and 24-epibrassinolide, stimulated elongation of Arabidopsis peduncles and inhibited root elongation, respectively. Furthermore, brassinolide altered the abundance of specific in vitro translatable mRNAs from peduncles and whole plants of Arabidopsis. Root elongation in the auxin-insensitive Arabidopsis mutant axr1 was inhibited by 24-epibrassinolide but not by 2,4-D, indicating an independent mode of action for these growth regulators in this physiological response.Abbreviations BR brassinolide - EBR 24-epibrassinolide; 2.4-D,2,4-dichlorophenoxyacetic acid - KPSC 10 mM potassium phosphate, pH 6.0, 2% sucrose, 50 g/ml chloramphenicol - PAGE polyacrylamide gel electrophoresis  相似文献   

20.
In this paper the definitions of brassinolide, brassinolide activity andbrassins are reviewed, and definitions for the terms brassin, naturalbrassinosteroids and brassinosteroid analogues, based on biosynthetic reasoningand structure similarity are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号