首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Aquaporins form a family of water and solute channel proteins and are present in most living organisms. In plants, aquaporins play an important role in the regulation of root water transport in response to abiotic stresses. In this work, we investigated the role of phosphorylation of plasma membrane intrinsic protein (PIP) aquaporins in the Arabidopsis thaliana root by a combination of quantitative mass spectrometry and cellular biology approaches. A novel phosphoproteomics procedure that involves plasma membrane purification, phosphopeptide enrichment with TiO(2) columns, and systematic mass spectrometry sequencing revealed multiple and adjacent phosphorylation sites in the C-terminal tail of several AtPIPs. Six of these sites had not been described previously. The phosphorylation of AtPIP2;1 at two C-terminal sites (Ser(280) and Ser(283)) was monitored by an absolute quantification method and shown to be altered in response to treatments of plants by salt (NaCl) and hydrogen peroxide. The two treatments are known to strongly decrease the water permeability of Arabidopsis roots. To investigate a putative role of Ser(280) and Ser(283) phosphorylation in aquaporin subcellular trafficking, AtPIP2;1 forms mutated at either one of the two sites were fused to the green fluorescent protein and expressed in transgenic plants. Confocal microscopy analysis of these plants revealed that, in resting conditions, phosphorylation of Ser(283) is necessary to target AtPIP2;1 to the plasma membrane. In addition, an NaCl treatment induced an intracellular accumulation of AtPIP2;1 by exerting specific actions onto AtPIP2;1 forms differing in their phosphorylation at Ser(283) to induce their accumulation in distinct intracellular structures. Thus, the present study documents stress-induced quantitative changes in aquaporin phosphorylation and establishes for the first time a link with plant aquaporin subcellular localization.  相似文献   

2.
De novo mutations in ATP1A3, the gene encoding the α3-subunit of Na+,K+-ATPase, are associated with the neurodevelopmental disorder Alternating Hemiplegia of Childhood (AHC). The aim of this study was to determine the functional consequences of six ATP1A3 mutations (S137Y, D220N, I274N, D801N, E815K, and G947R) associated with AHC. Wild type and mutant Na+,K+-ATPases were expressed in Sf9 insect cells using the baculovirus expression system. Ouabain binding, ATPase activity, and phosphorylation were absent in mutants I274N, E815K and G947R. Mutants S137Y and D801N were able to bind ouabain, although these mutants lacked ATPase activity, phosphorylation, and the K+/ouabain antagonism indicative of modifications in the cation binding site. Mutant D220N showed similar ouabain binding, ATPase activity, and phosphorylation to wild type Na+,K+-ATPase. Functional impairment of Na+,K+-ATPase in mutants S137Y, I274N, D801N, E815K, and G947R might explain why patients having these mutations suffer from AHC. Moreover, mutant D801N is able to bind ouabain, whereas mutant E815K shows a complete loss of function, possibly explaining the different phenotypes for these mutations.  相似文献   

3.
Cation transport is thought to be an important process for ion homeostasis in plant cells. Here, we report that a soybean putative cation/proton antiporter GmCAX1 may be a mediator of this process. GmCAX1 is expressed in all tissues of the soybean plants but at a lower level in roots. Its expression was induced by PEG, ABA, Ca2+, Na+ and Li+ treatments. The GmCAX1-GFP fusion protein was mainly localized in plasma membrane of the transgenic Arabidopsis plant cells and onion epidermal cells. Transgenic Arabidopsis plants overexpressing GmCAX1 accumulated less Na+, K+, and Li+, and were more tolerant to elevated Li+ and Na+ levels during germination when compared with the controls. These results suggest that GmCAX1 may function as an antiporter for Na+, K+ and Li+. Modulation of this antiporter may be beneficial for regulation of ion homeostasis and thus plant salt tolerance.  相似文献   

4.
The system IMINO transporter plays an essential role in the transport of proline and hydroxyproline in the intestine and kidney. Its molecular correlate has been identified and named SIT1 or IMINO (SLC6A20). Initial characterization of the transporter showed it to be Na+ and Cl?-dependent, but the stoichiometry remained unresolved. Using homology modeling along the structure of the bacterial leucine transporter LeuT, we identified two highly conserved Na+-binding sites and a putative Cl?-binding site. Mutation of all residues in the two proposed Na+-binding sites revealed that most of them were essential for uptake and completely inactivated the transporter. However, mutants A22V (Na+-binding site 1) and mutants S20A, S20G, S20G/G405S (Na+-binding site 2) were partially active and characterized further. Flux studies suggested that mutations of Na+-binding site 1 caused a decrease of the Na+-K0.5, whereas mutations of site 2 increased the K0.5. Mutation of Na+-binding site 1 also changed the ion selectivity of the IMINO transporter. IMINO actively translocates 36Cl? demonstrating that the proposed chloride binding site is used in the transporter. Accumulation experiments and flux measurements at different holding potentials showed that the transporter can work as a 2Na+/1Cl?-proline cotransporter. The proposed homology model allows to study mutations in IMINO associated with iminoglycinuria.  相似文献   

5.
Rapid-onset dystonia parkinsonism (RDP), a rare neurological disorder, is caused by mutation of the neuron-specific α3-isoform of Na+,K+-ATPase. Here, we present the functional consequences of RDP mutation D923N. Relative to the wild type, the mutant exhibits a remarkable ∼200-fold reduction of Na+ affinity for activation of phosphorylation from ATP, reflecting a defective interaction of the E1 form with intracellular Na+. This is the largest effect on Na+ affinity reported so far for any Na+,K+-ATPase mutant. D923N also affects the interaction with extracellular Na+ normally driving the E1P to E2P conformational transition backward. However, no impairment of K+ binding was observed for D923N, leading to the conclusion that Asp923 is specifically associated with the third Na+ site that is selective toward Na+. The crystal structure of the Na+,K+-ATPase in E2 form shows that Asp923 is located in the cytoplasmic half of transmembrane helix M8 inside a putative transport channel, which is lined by residues from the transmembrane helices M5, M7, M8, and M10 and capped by the C terminus, recently found involved in recognition of the third Na+ ion. Structural modeling of the E1 form of Na+,K+-ATPase based on the Ca2+-ATPase crystal structure is consistent with the hypothesis that Asp923 contributes to a site binding the third Na+ ion. These results in conjunction with our previous findings with other RDP mutants suggest that a selective defect in the handling of Na+ may be a general feature of the RDP disorder.  相似文献   

6.
Glutamate transporters maintain synaptic concentration of the excitatory neurotransmitter below neurotoxic levels. Their transport cycle consists of cotransport of glutamate with three sodium ions and one proton, followed by countertransport of potassium. Structural studies proposed that a highly conserved serine located in the binding pocket of the homologous GltPh coordinates l-aspartate as well as the sodium ion Na1. To experimentally validate these findings, we generated and characterized several mutants of the corresponding serine residue, Ser-364, of human glutamate transporter SLC1A2 (solute carrier family 1 member 2), also known as glutamate transporter GLT-1 and excitatory amino acid transporter EAAT2. S364T, S364A, S364C, S364N, and S364D were expressed in HEK cells and Xenopus laevis oocytes to measure radioactive substrate transport and transport currents, respectively. All mutants exhibited similar plasma membrane expression when compared with WT SLC1A2, but substitutions of serine by aspartate or asparagine completely abolished substrate transport. On the other hand, the threonine mutant, which is a more conservative mutation, exhibited similar substrate selectivity, substrate and sodium affinities as WT but a lower selectivity for Na+ over Li+. S364A and S364C exhibited drastically reduced affinities for each substrate and enhanced selectivity for l-aspartate over d-aspartate and l-glutamate, and lost their selectivity for Na+ over Li+. Furthermore, we extended the analysis of our experimental observations using molecular dynamics simulations. Altogether, our findings confirm a pivotal role of the serine 364, and more precisely its hydroxyl group, in coupling sodium and substrate fluxes.  相似文献   

7.
Atlantic salmon Salmo salar smolts were exposed to one of the four different aerobic exercise regimens for 10 weeks followed by a 1 week final smoltification period in fresh water and a subsequent eight‐day seawater transfer period. Samples of gill and intestinal tissue were taken at each time point and gene expression was used to assess the effects of exercise training on both branchial and intestinal osmoregulatory pathways. Real‐time polymerase chain reaction (PCR) analysis revealed that exercise training up‐regulated the expression of seawater relevant genes in the gills of S. salar smolts, including Na+, K+ ATPase (nka) subunit α1b, the Na+, K+, 2 Cl? co‐transporter (nkcc1) and cftr channel. These findings suggest that aerobic exercise stimulates expression of seawater ion transport pathways that may act to shift the seawater transfer window for S. salar smolts. Aerobic exercise also appeared to stimulate freshwater ion uptake mechanisms probably associated with an osmorespiratory compromise related to increased exercise. No differences were observed in plasma Na+ and Cl? concentrations as a consequence of exercise treatment, but plasma Na+ was lower during the final smoltification period in all treatments. No effects of exercise were observed for intestinal nkcc2, nor the Mg2+ transporters slc41a2 and transient receptor protein M7 (trpm7); however, expression of both Mg2+ transporters was affected by salinity transfer suggesting a dynamic role in Mg2+ homeostasis in fishes.  相似文献   

8.
All-atom molecular dynamics is used to investigate the transport of Na+ across a 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayer facilitated by a diazacrown hydraphile. Specifically, the free energy of Na+ passing through the bilayer is calculated using the adaptive biasing force method to study the free energy associated with the increase in Na+ transport in the presence of the hydraphile molecule. The results show that water interaction greatly influences Na+ transport through the lipid bilayer as water is pulled through the bilayer with Na+ forming a water channel. The hydraphile causes a reduction in the free energy barrier for the transport of Na+ through the head group part of the lipid bilayer since it complexes the Na+ reducing the necessity for water to be complexed and, therefore, dragged through with Na+, an energetically unfavorable process. The free energy associated with Na+ being desolvated within the bilayer is significantly decreased in the presence of the hydraphile molecule; the hydraphile increases the number of solvation states of Na+ that can be adopted, and this increase in the number of available configurations provides an entropic explanation for the success of the hydraphile.  相似文献   

9.
In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKTI;4, a member of the HKT gene family from Sorghum bicolor. Upon Na+ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na+/ K+ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na+ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K+, implicating that SbHKT1;4 may mediate K+ uptake in the presence of excessive Na+. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na+ and K+ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKTI;4 functions to maintain optimal Na+/K+ balance under Na+ stress to the breeding of salt-tolerant glycophytic crops is discussed.  相似文献   

10.
The melibiose permease of Salmonella typhimurium (MelBSt) catalyzes the stoichiometric symport of galactopyranoside with a cation (H+, Li+, or Na+) and is a prototype for Na+-coupled major facilitator superfamily (MFS) transporters presenting from bacteria to mammals. X-ray crystal structures of MelBSt have revealed the molecular recognition mechanism for sugar binding; however, understanding of the cation site and symport mechanism is still vague. To further investigate the transport mechanism and conformational dynamics of MelBSt, we generated a complete single-Cys library containing 476 unique mutants by placing a Cys at each position on a functional Cys-less background. Surprisingly, 105 mutants (22%) exhibit poor transport activities (<15% of Cys-less transport), although the expression levels of most mutants were comparable to that of the control. The affected positions are distributed throughout the protein. Helices I and X and transmembrane residues Asp and Tyr are most affected by cysteine replacement, while helix IX, the cytoplasmic middle-loop, and C-terminal tail are least affected. Single-Cys replacements at the major sugar-binding positions (K18, D19, D124, W128, R149, and W342) or at positions important for cation binding (D55, N58, D59, and T121) abolished the Na+-coupled active transport, as expected. We mapped 50 loss-of-function mutants outside of these substrate-binding sites that suffered from defects in protein expression/stability or conformational dynamics. This complete Cys-scanning mutagenesis study indicates that MelBSt is highly susceptible to single-Cys mutations, and this library will be a useful tool for further structural and functional studies to gain insights into the cation-coupled symport mechanism for Na+-coupled MFS transporters.  相似文献   

11.
The yeast Debaryomyces hansenii is considered a marine organism. Sea water contains 0.6 M Na+ and 10 mM K+; these cations permeate into the cytoplasm of D. hansenii where proteins and organelles have to adapt to high salt concentrations. The effect of high concentrations of monovalent and divalent cations on isolated mitochondria from D. hansenii was explored. As in S. cerevisiae, these mitochondria underwent a phosphate-sensitive permeability transition (PT) which was inhibited by Ca2+ or Mg2+. However, D. hansenii mitochondria require higher phosphate concentrations to inhibit PT. In regard to K+ and Na+, and at variance with mitochondria from all other sources known, these monovalent cations promoted closure of the putative mitochondrial unspecific channel. This was evidenced by the K+/Na+-promoted increase in: respiratory control, transmembrane potential and synthesis of ATP. PT was equally sensitive to either Na+ or K+. In the presence of propyl-gallate PT was still observed while in the presence of cyanide the alternative pathway was not active enough to generate a ΔΨ due to a low AOX activity. In D. hansenii mitochondria K+ and Na+ optimize oxidative phosphorylation, providing an explanation for the higher growth efficiency in saline environments exhibited by this yeast.  相似文献   

12.
Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na+ effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na+ uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate‐dependent transport systems in series that take up and load Na+ into the xylem constitute the major pathway for the accumulation of Na+ in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na+ accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate‐dependent Na+ transport. Arabidopsis plants exposed to an osmotic potential of ?1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na+ could not be accumulated. In contrast, in NaCl the plants that accumulated Na+ lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na+ uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long‐term toxicity.  相似文献   

13.
Shabala L  Cuin TA  Newman IA  Shabala S 《Planta》2005,222(6):1041-1050
The SOS signal-transduction pathway is known to be important for ion homeostasis and salt tolerance in plants. However, there is a lack of in planta electrophysiological data about how the changes in signalling and ion transport activity are integrated at the cellular and tissue level. In this study, using the non-invasive ion flux MIFE technique, we compared net K+, H+ and Na+ fluxes from elongation and mature root zones of Arabidopsis wild type Columbia and sos mutants. Our results can be summarised as follows: (1) SOS mutations affect the function of the entire root, not just the root apex; (2) SOS signalling pathway is highly branched; (3) Na+ effects on SOS1 may by-pass the SOS2/SOS3 complex in the root apex; (4) SOS mutation affects H+ transport even in the absence of salt stress; (5) SOS1 mutation affects intracellular K+ homeostasis with a plasma membrane depolarisation-activated outward-rectifying K+ channel being a likely target; (6) H+ pump also may be a target of SOS signalling. We provide an improved model of SOS signalling and discuss physiological mechanisms underlying salt stress perception and signalling in plants. Our work shows that in planta studies are essential for understanding the functional genomics of plant salt tolerance.  相似文献   

14.
Two recessive mutations of Paramecium tetraurelia confer sensitivity to potassium: While wild-type cells survive when up to 30 mM KCI is added to their growth medium, mutants cease to grow and die when levels of added KCl reach 20–25 mM. Similar sensitivities are seen to Rb+ and Cs+, but not to Na+. Swimming behavior of mutants is indistinguishable from wild type when place in stimulating solutions containing Na+, K+, or Ba2+. Behavioral adaptation to low levels of K+ also is indistiguishable from wild type. Flame photometry reveals that one mutant is unable to keep out K+ when that ion is at high levels in the medium, while the other mutant readily leaks K+ and Na+ when those ions are at low levels in the medium. Both mutants have markedly lower internal Na+ than does wild type. Problem with K+ permeability account for the sensitivity of the one mutant to elevated external K+, but the basis of sensitivity in the other mutant is unclear. These mutants expand the range of ion regulation mutants in Paramecium and demonstrate that lesions in cellular ion regulation in this organism need not result in changes in swimming behavior.  相似文献   

15.
The effects of deoxycholate, taurocholate and cholate on transport and mucosal ATPase activity have been investigated in the rat jejunum in vivo using closed-loop and perfusion techniques.In the closed-loops, 5 mM deoxycholate selectively inactivated (Na+ + K+)-ATPase, and net secretion of Na+ induced by 2.5 mM deoxycholate was due to reduced lumen to plasma flux of the ion; deoxycholate (2.5 mM) produced marked inhibition of 3-O-methylglucose transport. Luminal disappearance rates of deoxycholate (60.5±2.9 % per g wet wt of gut) greatly exceeded those of taurocholate (4.3±1.0).In the perfusion studies 1 mM deoxycholate induced net secretion of water, Na+ and Cl, and inhibited active glucose transport; concomitantly “total” ATPase, (Na+ + K+)-ATPase, and Mg2+-ATPase were inhibited. At higher concentrations (5 mM) deoxycholate stimulated Mg2+-ATPase activity. Taurocholate and cholate at 1 mM had no effect on transport or (Na+ + K+)-ATPase. Mucosal lactase, sucrase and maltase activities were not affected by 1 mM deoxycholate, taurocholate or cholate.These results suggest that deoxycholate inhibits sodium-coupled glucose transport by inhibition of (Na+ + K+)-ATPase at the lateral and basal membranes of the epithelial cell, rather than from an effect at the brush-border membrane level.  相似文献   

16.
Molecular mechanisms of potassium and sodium uptake in plants   总被引:20,自引:0,他引:20  
Potassium (K+) is an essential nutrient and the most abundant cation in plants, whereas the closely related ion sodium (Na+) is toxic to most plants at high millimolar concentrations. K+ deficiency and Na+ toxicity are both major constraints to crop production worldwide. K+ counteracts Na+ stress, while Na+, in turn, can to a certain degree alleviate K+ deficiency. Elucidation of the molecular mechanisms of K+ and Na+ transport is pivotal to the understanding – and eventually engineering – of plant K+ nutrition and Na+ sensitivity. Here we provide an overview on plant K+ transporters with particular emphasis on root K+ and Na+ uptake. Plant K+-permeable cation transporters comprise seven families: Shaker-type K+ channels, `two-pore' K+ channels, cyclic-nucleotide-gated channels, putative K+/H+ antiporters, KUP/HAK/KT transporters, HKT transporters, and LCT1. Candidate genes for Na+ transport are the KUP/HAK/KTs, HKTs, CNGCs, and LCT1. Expression in heterologous systems, localization in plants, and genetic disruption in plants will provide insight into the roles of transporter genes in K+ nutrition and Na+ toxicity.  相似文献   

17.
The type IIa Na+/Pi, cotransporter (NaPi-IIa) mediates electrogenic transport of three Na+ and one divalent Pi ion (and one net positive charge) across the cell membrane. Sequence comparison of electrogenic NaPi-IIa and IIb isoforms with the electroneutral NaPi-IIc isoform pointed to the third transmembrane domain (TMD-3) as a possibly significant determinant of substrate binding. To elucidate the role of TMD-3 in the topology and mechanism underlying NaPi-IIa function we subjected it to cysteine scanning mutagenesis. The constructs were expressed in Xenopus oocytes and Pi transport kinetics were assayed by electrophysiology and radiotracer uptake. Cys substitution resulted in only marginally altered kinetics of Pi transport in those mutants providing sufficient current for analysis. Only one site, at the extracellular end of TMD-3, appeared to be accessible to methanethiosulfonate reagents. However, additional mutations carried out at D224 (replaced by E, G or N) and N227 (replaced by D or Q) resulted in markedly altered voltage and substrate dependencies of the Pi-dependent currents. Replacing Asp-224 (highly conserved in electrogenic a and b isoforms) with Gly (the residue found in the electroneutral c isoform) resulted in a mutant that mediated electroneutral Na+-dependent Pi transport. Since electrogenic NaPi-II transports 3 Na+/transport cycle, whereas electroneutral NaPi-IIc only transports 2, we speculate that this loss of electrogenicity might result from the loss of one of the three Na+ binding sites in NaPi-IIa.  相似文献   

18.
赵宏亮  倪细炉  侯晖  谢沁宓  程昊 《广西植物》2022,42(7):1150-1159
为揭示长苞香蒲(Typha domingensis)对盐生湿地生态系统中Na+和K+的吸收与转运特征,探讨长苞香蒲对盐生湿地的生态修复效果,该研究采用人工模拟盐生湿地的方法,设置CK(对照)、T1(浇灌100 mmol·L-1盐水)、T2(浇灌200 mmol·L-1盐水)及T3(浇灌300 mmol·L-1盐水)4种不同盐浓度的人工湿地生态系统,并分别于5月5日(开始盐胁迫处理,S0)、5月30日(S1)、6月30日(S2)和7月30日(S3)测量其株高和干重、植株地上与地下部分Na+和K+的含量以及底泥和水体中Na+和K+的含量以分析长苞香蒲对盐碱湿地的脱盐作用。结果表明:(1)各处理的长苞香蒲的株高和干重随着处理时间的延长呈增加趋势,但与CK相比,各处理生长量随盐浓度升高出现下降趋势。(2)高浓度盐处理(T3)使长苞香蒲的地上部分和地下部分的Na+分别增加了2.5...  相似文献   

19.
采用4种浓度的NaCl溶液(50、100、150、200 mmol/L)处理二穗短柄草和拟南芥(对照)幼苗,测定不同浓度盐胁迫下2种植物幼苗的生长指标和离子分布,以探讨二穗短柄草在盐胁迫下主要阳离子平衡机制.结果表明:(1)盐胁迫显著抑制二穗短柄草根叶的生物量积累.(2)根冠比数据显示,在盐胁迫条件下二穗短柄草能够更好地维系地下部分的生物量积累.(3)在4种浓度盐胁迫下,二穗短柄草叶中Na+含量低于根系,而且K+、Cl-含量和K+/Na+比值始终高于根系,说明在二穗短柄草中Na+从地下到地上的转运受到抑制,但对Cl-的转运缺乏有效的调控.(4)回归分析发现,盐胁迫下二穗短柄草和拟南芥根部Na+与K+含量变化呈正相关关系,而在叶部则不相关,说明二穗短柄草和拟南芥Na+与K+在根部具有相同的离子通道,而在叶部却具有各自独立的转运途径.  相似文献   

20.
Spergularia marina (L.) Griseb. is. a rapidly growing, annual, coastal halophyte. Because of its small size, it is suitable for isotope studies of ion transport well beyond the seedling stage. The purpose of this report is to establish the similarities and differences between 22Na+ and 42K+ uptake in S. marina and in more commonly used mesophytic crop species. Vegetative plants were used 18 days after transfer to solution culture. Plants were grown either on Na+-free medium or on 0.2 × sea water. 22Na+ uptake was linear with time for several hours. The rate was relatively insensitive to external concentration between 1 and 180 mol Na+ m?3, particularly in Na+-free plants. Transport to the shoot accounted for 40 to 70% of the total uptake, dependent on salinity but largely independent of time. 42K+ uptake decreased with increasing salinity in Na+-free plants and increased in 0.2 × sea water plants. Both uptake and transport to the shoot were non-linear with time, upward concavity suggesting recovery from a manipulative and/or osmotic injury. Steady state root contents were compared with predicted contents based on cortical cell electrical potentials using the Nernst equation. Reasonable agreement was found in all cases except Na+ content of 0.2 × sea water plants, in which active efflux was indicated. Uptake studies conducted in the presence of chemical modifiers (dicyclohexylcarbodiimide, dinitrophenol and fusicoccin) showed responses of 42K+ uptake as expected from studies on agronomic species, and implied the presence of a similar active uptake here despite the appearance of equilibrium. Active Na+ uptake was suggested at low Na+ levels. We conclude that S. marina is a promising experimental system combining the rapid nutrient acquisition strategy of agionomically important annuals with a high degree of salt tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号