首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
2.
The body plan of the turtle represents an example of evolutionary novelty for acquisition of the shell. Unlike similar armors in other vertebrate groups, the turtle shell involves the developmental repatterning of the axial skeleton and exhibits an unusual topography of musculoskeletal elements. Thus, the turtle provides an ideal case study for understanding changes in the developmental program associated with the morphological evolution of vertebrates. In this article, the evolution of the turtle-specific body plan is reviewed and discussed. The key to understanding shell patterning lies in the modification of the ribs, for which the carapacial ridge (CR), a turtle-specific embryonic anlage, is assumed to be responsible. The growth of the ribs is arrested in the axial part of the body, allowing dorsal and lateral oriented growth to encapsulate the scapula. Although the CR does not appear to induce this axial arrest per se, it has been shown to support the fan-shaped patterning of the ribs, which occurs concomitant with marginal growth of the carapace along the line of the turtle-specific folding that takes place in the lateral body wall. During the process of the folding, some trunk muscles maintain their ancestral connectivities, whereas the limb muscles establish new attachments specific to the turtle. The turtle body plan can thus be explained with our knowledge of vertebrate anatomy and developmental biology, consistent with the evolutionary origin of the turtle suggested by the recently discovered fossil species, Odontochelys.  相似文献   

3.
Shell bone histology indicates terrestrial palaeoecology of basal turtles   总被引:2,自引:0,他引:2  
The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.  相似文献   

4.
Turtles (Testudinata) are a diverse group of reptiles that conquered a broad set of habitats and feeding ecologies over the course of their well‐documented evolutionary history. We here investigate the cranial shape of 171 representatives of the turtle lineage and the relationship of shape to different habitat and diet preferences using two‐dimensional geometric morphometrics. The skull shape of extant turtles correlates with both ecological proxies, but is more affected by habitat than diet. However, the application of these correlations to extinct turtles produces mostly flawed results, as least when compared to external data such as sedimentary environment, highlighting that the morphospace held by extant turtles is not necessarily the optimal location in tree space for a particular ecology. The inability of this study to correctly predict the ecology of extinct turtles is likely related to the fact that the shape of turtle skulls is dominated by the emarginations and jaw closure mechanisms, two shape features unrelated to habitat or feeding ecology. This indicates that various specializations that are apparent in the skull only contribute little to overall shape.  相似文献   

5.
A recently published study on the development of the turtle shell highlights the important role that development plays in the origin of evolutionary novelties. The evolution of the highly derived adult anatomy of turtles is a prime example of a macroevolutionary event triggered by changes in early embryonic development. Early ontogenetic deviation may cause patterns of morphological change that are not compatible with scenarios of gradualistic, stepwise transformation.  相似文献   

6.
The Bauru Basin (south-central Brazil) fossils have largely contributed to understand the faunal composition of South American Cretaceous. Among those, several turtle specimens were retrieved from those deposits, all belonging to Podocnemidoidae, the single group known from the Basin. On the other hand, only incomplete shell elements indicate large turtles such as ‘Peirópolis A’. Another shell fragment, a large peripheral plate from the Marília Formation, is described here. Its lack of surface ornamentation, and deep sulci are generally typical for podocnemidoids. The plate exhibits a narrow knob slightly projected onto the pleuro-marginal sulcus, absent in any other Bauru Basin turtle. According to extant and fossil podocnemidoids measures, we estimated this individual reached 1 m of carapace length, exceeding in size all other taxa known from the Basin. This new report reveals a broader size variation among podocnemidoids from the Late Cretaceous of Bauru Basin and a morphological diversity previously unknown for the period, comparable to those of the Amazon Basin today, in which inhabits the largest extant podocnemidoid Podocnemis expansa. Furthermore, the occurrence of such large turtles implies the presence of perennial streams on the northeastern portion of the Bauru Basin during the Maastrichtian and a richer environment than previously thought.  相似文献   

7.
8.
Turtles are characterized by their shell, composed of a dorsal carapace and a ventral plastron. The carapace first appears as the turtle-specific carapacial ridge (CR) on the lateral aspect of the embryonic flank. Accompanying the acquisition of the shell, unlike in other amniotes, hypaxial muscles in turtle embryos appear as thin threads of fibrous tissue. To understand carapacial evolution from the perspective of muscle development, we compared the development of the muscle plate, the anlage of hypaxial muscles, between the Chinese soft-shelled turtle, Pelodiscus sinensis, and chicken embryos. We found that the ventrolateral lip (VLL) of the thoracic dermomyotome of P. sinensis delaminates early and produces sparse muscle plate in the lateral body wall. Expression patterns of the regulatory genes for myotome differentiation, such as Myf5, myogenin, Pax3, and Pax7 have been conserved among amniotes, including turtles. However, in P. sinensis embryos, the gene hepatocyte growth factor (HGF), encoding a regulatory factor for delamination of the dermomyotomal VLL, was uniquely expressed in sclerotome and the lateral body wall at the interlimb level. Implantation of COS-7 cells expressing a HGF antagonist into the turtle embryo inhibited CR formation. We conclude that the de novo expression of HGF in the turtle mesoderm would have played an innovative role resulting in the acquisition of the turtle-specific body plan.  相似文献   

9.
This study uses the carapace of emydid turtles to address hypothesized differences between terrestrial and aquatic species. Geometric morphometrics are used to quantify shell shape, and performance is estimated for two shell functions: shell strength and hydrodynamics. Aquatic turtle shells differ in shape from terrestrial turtle shells and are characterized by lower frontal areas and presumably lower drag. Terrestrial turtle shells are stronger than those of aquatic turtles; many-to-one mapping of morphology to function does not entirely mitigate a functional trade-off between mechanical strength and hydrodynamic performance. Furthermore, areas of morphospace characterized by exceptionally poor performance in either of the functions are not occupied by any emydid species. Though aquatic and terrestrial species show no significant differences in the rate of morphological evolution, aquatic species show a higher lineage density, indicative of a greater amount of convergence in their evolutionary history. The techniques employed in this study, including the modeling of theoretical shapes to assess performance in unoccupied areas of morphospace, suggest a framework for future studies of morphological variation.  相似文献   

10.
Extant sea turtles develop and lay pliable (flexible) eggs; however, it is unknown whether they inherited this reproductive strategy from their closer fossil relatives or if it represents an evolutionary novelty. Here, we describe the first undisputable gravid marine fossil turtle ever found, from the early Cretaceous of Colombia, belonging to Desmatochelys padillai Cadena & Parham, which constitutes a representative of the Protostegidae. Using thin sectioning of one of the eggs, as well as scanning electron microscopy coupled with elemental characterization, cathodoluminescence, and computer tomography, we established that Desmatochelys padillai produced rigid eggs similar to those associated with some extant and fossil freshwater and terrestrial turtles. At least 48 spherical eggs were preserved inside this gravid turtle. We suggest that the development of rigid eggs in the extinct marine turtle Desmatochelys padillai resulted as an adaptation for egg‐embryo requirements dictated by the physical attributes of the nesting site.  相似文献   

11.
Adding new taxa to morphological phylogenetic analyses without substantially revising the set of included characters is a common practice, with drawbacks (undersampling of relevant characters) and potential benefits (character selection is not biased by preconceptions over the affinities of the ‘retrofitted’ taxon). Retrofitting turtles (Testudines) and other taxa to recent reptile phylogenies consistently places turtles with anapsid‐grade parareptiles (especially Eunotosaurus and/or pareiasauromorphs), under both Bayesian and parsimony analyses. This morphological evidence for turtle–parareptile affinities appears to contradict the robust genomic evidence that extant (living) turtles are nested within diapsids as sister to extant archosaurs (birds and crocodilians). However, the morphological data are almost equally consistent with a turtle–archosaur clade: enforcing this molecular scaffold onto the morphological data does not greatly increase tree length (parsimony) or reduce likelihood (Bayesian inference). Moreover, under certain analytic conditions, Eunotosaurus groups with turtles and thus also falls within the turtle–archosaur clade. This result raises the possibility that turtles could simultaneously be most closely related to a taxon traditionally considered a parareptile (Eunotosaurus) and still have archosaurs as their closest extant sister group.  相似文献   

12.
The body plan of turtles is unique among tetrapods in the presenceof the shell. The structure of the carapace involves a uniquerelationship between the axial and the appendicular skeletons.A common developmental mechanism, an epithelial-mesenchymalinteraction, has been identified in the early stages of carapacedevelopment by means of basic histological and immunofluorescencetechniques. By analogy to other structures initiated by epithelial-mesenchymalinteractions, it is hypothesized that carapace development isdependent on this interaction in the body wall. Surgical perturbationswere designed to test the causal connection between the epithelial-mesenchymalinteraction in the body wall and the unusual placement of theribs in turtles. By comparison to data available on body wallformation in avian embryos, these experiments also shed lighton the segregation of somitic and lateral plate cell populationsand the embryonic origin of the scapula in turtles. This study specifically addresses the ontogeny of a unique tetrapodbody plan. The ontogenetic information can be used to make inferencesabout the phytogeny of this body plan and how it could haveevolved from the more typical primitive tetrapod. On a moregeneral level this studyexplores the potential role of commondevelopmental mechanisms in the generation of evolutionary novelties,and the developmental incongruities between homologous skeletalelements in different groups of tetrapods.  相似文献   

13.
A new, thin-shelled fossil from the Upper Triassic (Revueltian: Norian) Chinle Group of New Mexico, Chinlechelys tenertesta, is one of the most primitive known unambiguous members of the turtle stem lineage. The thin-shelled nature of the new turtle combined with its likely terrestrial habitat preference hint at taphonomic filters that basal turtles had to overcome before entering the fossil record. Chinlechelys tenertesta possesses neck spines formed by multiple osteoderms, indicating that the earliest known turtles were covered with rows of dermal armour. More importantly, the primitive, vertically oriented dorsal ribs of the new turtle are only poorly associated with the overlying costal bones, indicating that these two structures are independent ossifications in basal turtles. These novel observations lend support to the hypothesis that the turtle shell was originally a complex composite in which dermal armour fused with the endoskeletal ribs and vertebrae of an ancestral lineage instead of forming de novo. The critical shell elements (i.e. costals and neurals) are thus not simple outgrowths of the bone of the endoskeletal elements as has been hypothesized from some embryological observations.  相似文献   

14.
The postembryonic development of the turtle carapace was studied in the aquatic Еmys orbicularis and the terrestrial Тestudo graeca. Differences in the structure of the bony shell in aquatic and terrestrial turtles were shown to be associated with varying degrees of development of epidermal derivatives, namely, the thickness of the scutes and the depth of horny furrows. Sinking of the horny furrows into the dermis causes local changes in the structure of the collagen matrix, which might precondition the acceleration of the ossification. Aquatic turtles possess a relatively thin horny cover, whose derivatives are either weakly developed or altogether absent and thus make no noticeable impact on the growth dynamics of bony plates. Carapace plates of these turtles outgrow more or less evenly around the periphery, which results in uniform costals, relatively narrow and partly reduced neurals, and broad peripherals extending beyond the marginal scutes. In terrestrial turtles (Testudinidae), horny structures are much more developed and exert a considerable impact on the growth of bony elements. As a result, bony plates outgrow unevenly in the dermis, expanding fast in the zones under the horny furrows and slowly outside these zones. This determines the basic features of the testudinid carapace: alternately cuneate shape of costals, an alternation of broad octagonal and narrow tetragonal neurals, and the limitation of the growth of peripherals by pleuro-marginal furrows. The evolutionary significance of morphogenetic and constructional differences in the turtle carapace, and the association of these differences with the turtle habitats are discussed.  相似文献   

15.
16.
17.
SUMMARY Paleontologists and neontologists have long looked to development to understand the homologies of the dermal bones that form the "armor" of turtles, crocodiles, armadillos, and other vertebrates. This study shows molecular evidence supporting a dermomyotomal identity for the mesenchyme of the turtle carapacial ridge. The mesenchyme of the carapace primordium expresses Pax3 , Twist1 , Dermo1 , En1 , Sim1 , and Gremlin at early stages and before overt ossification expresses Pax1 . A hypothesis is proposed that this mesenchyme forms dermal bone in the turtle carapace. A comparison of regulatory gene expression in the primordia of the turtle carapace, the vertebrate limb, and the vertebral column implies the exaptation of key genetic networks in the development of the turtle shell. This work establishes a new role for this mesodermal compartment and highlights the importance of changes in genetic regulation in the evolution of morphology.  相似文献   

18.
Competing hypotheses of early turtle evolution contrast sharply in implying very different ecological settings-aquatic versus terrestrial-for the origin of turtles. We investigate the palaeoecology of extinct turtles by first demonstrating that the forelimbs of extant turtles faithfully reflect habitat preferences, with short-handed turtles being terrestrial and long-handed turtles being aquatic. We apply this metric to the two successive outgroups to all living turtles with forelimbs preserved, Proganochelys quenstedti and Palaeochersis talampayensis, to discover that these earliest turtle outgroups were decidedly terrestrial. We then plot the observed distribution of aquatic versus terrestrial habits among living turtles onto their hypothesized phylogenies. Both lines of evidence indicate that although the common ancestor of all living turtles was aquatic, the earliest turtles clearly lived in a terrestrial environment. Additional anatomical and sedimentological evidence favours these conclusions. The freshwater aquatic habitat preference so characteristic of living turtles cannot, consequently, be taken as positive evidence for an aquatic origin of turtles, but must rather be considered a convergence relative to other aquatic amniotes, including the marine sauropterygians to which turtles have sometimes been allied.  相似文献   

19.
The scute mosaic (pholidosis) of the turtle shell is a complex correlated system of the modular type. Horny scutes are separate morphological elements partially closely connected with each other and partially relatively autonomous in development. The last feature causes high variability of scutes in the shape, size, rate and direction of growth, and provides the basis of transformation of the entire mosaic. In the evolution of turtles, the horny shell changed towards a decrease in the number of elements composing it. The process of oligomerization developed through reduction and fusion of scutes or their anlages. The traces of these transformations are observed in the ontogeny of living turtles. The scutes undergoing reduction display the following developmental deviations: (1) a decrease in size of the scute anlage, (2) the temporal shift in initiation to later embryonic stages, (3) absence of an anlage of a own furrow (the boundaries of the scute are formed by the furrows of neighboring scutes), and (4) a decrease in size of the zone and rate of the scute growth. The fusion of horny scutes follows two patterns: (1) fusion of scute anlages and (2) reduction of horny furrows separating scutes before. Secondary polymerization of the scute mosaic by the appearance of additional elements usually results from abnormal development and is infrequently fixed in evolution. The main mechanism of evolutionary changes in turtle pholidosis was heterochrony, i.e., the time shift in initiation and developmental rate of scutes. The heterotopies, i.e., changes in the position of scute anlages, played a minor role in the evolution of turtles; they usually caused only scute abnormalities, which was frequently asymmetrical.  相似文献   

20.
Pareiasaur phylogeny and the origin of turtles   总被引:9,自引:0,他引:9  
The evolutionary relationship of all the valid species (and thus genera) of pareiasaurs are assessed through a phylogcnctic analysis of these taxa together with turtles, Owenetta, Barasaurus, Sclerosaurus, procolophonids, lanthanosuchids, nyctiphruretids, and nycterolctcrids. 128 os-teological characters were used, and almost all relevant taxa were examined. The results confirm that among these taxa, pareiasaurs and turtles form a robust clade, to the exclusion of all other taxa including procolophonids. However, pareiasaurs might not be the mono-phyletic sister group of turtles, as previously suggested. Rather, there is some evidence that pareiasaurs are paraphyletic with respect to (i.e. ‘ancestral to’) turtles. Among pareiasaurs, the early, large, heavily ossified forms such as Brady.saurus are most distantly related to turtles. These forms are characterized by rather smooth skulls, and dermal armour restricted to the dorsal midline. More closely related to turtles are forms such as Scutosaurus, Pareiasuchus, and Elginia. These taxa form a distinct clade of pareiasaurs, characterized by a very ‘mammallike’ pelvis, elaborate cranial ornamentation and a loose covering of osteoderms over the entire dorsum. The late, dwarf pareiasaurs Nanoparia, Anthodon, and Pumiliopareia are the nearest relatives of turtles. These forms exhibit otherwise uniquely turtle features such as a rigid covering of dermal armour over the entire dorsal region, expanded flattened ribs, cylindrical scapula blade, great reduction of humeral torsion (to 25o), greatly developed trochanter major, offset femoral head, and reduced cnemial crest of the tibia. Thus, many features thought to be restricted to turtles (and thus to have evolved simultaneously with the turtle shell) actually arose earlier, at various points along the pareiasaurian stem lineage. The identification of the nature and sequence of anatomical changes leading to the origin of turtles, and the possibility that turtles are derived from dwarf pareiasaurs, should have important implications for speculations on the evolutionary biology of turtle origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号