首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein acetylation is a rapid mechanism for control of protein function. Acetyl‐CoA synthetase (AMP‐forming, Acs) is the paradigm for the control of metabolic enzymes by lysine acetylation. In many bacteria, type I or II protein acetyltransferases acetylate Acs, however, in actinomycetes type III protein acetyltransferases control the activity of Acs. We measured changes in the activity of the Streptomyces lividans Acs (SlAcs) enzyme upon acetylation by PatB using in vitro and in vivo analyses. In addition to the acetylation of residue K610, residue S608 within the acetylation motif of SlAcs was also acetylated (PKTRSGK610). S608 acetylation rendered SlAcs inactive and non‐acetylatable by PatB. It is unclear whether acetylation of S608 is enzymatic, but it was clear that this modification occurred in vivo in Streptomyces. In S. lividans, an NAD+‐dependent sirtuin deacetylase from Streptomyces, SrtA (a homologue of the human SIRT4 protein) was needed to maintain SlAcs function in vivo. We have characterized a sirtuin‐dependent reversible lysine acetylation system in Streptomyces lividans that targets and controls the Acs enzyme of this bacterium. These studies raise questions about acetyltransferase specificity, and describe the first Acs enzyme in any organism whose activity is modulated by O‐Ser and N?Lys acetylation.  相似文献   

2.
3.
Recent analysis of prokaryotic Nε‐lysine‐acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the Nε‐lysine‐acetylated proteome of gram‐positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl‐lysine‐specific antibodies followed by LC‐MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism.  相似文献   

4.
3-Hydroxybenzoate:coenzyme A ligase, an enzyme involved in xanthone biosynthesis, was detected in cell-free extracts from cultured cells of Centaurium erythraea Rafn. The enzyme was separated from 4-coumarate:coenzyme A ligase by fractionated ammonium sulphate precipitation and hydrophobic interaction chromatography. The CoA ligases exhibited different substrate specificities. 3-Hydroxybenzoate:coenzyme A ligase activated 3-hydroxybenzoic acid most efficiently and lacked affinity for cinnamic acids. In contrast, 4-coumarate:CoA ligase mainly catalyzed the activation of 4-coumaric acid but did not act on benzoic acids. The two enzymes were similar with respect to their relative molecular weight, their pH and temperature optima, their specific activity and the changes in their activity during cell culture growth. Received: 23 September 1996 / Accepted: 28 November 1996  相似文献   

5.
The functions of two long-chain fatty acid CoA ligase genes (facl) in crude oil-degrading Geobacillus thermodenitrificans NG80-2 were characterized. Facl1 and Facl2 encoded by GTNG_0892 and GTNG_1447 were expressed in Escherichia coli and purified as His-tagged fusion proteins. Both enzymes utilized a broad range of fatty acids ranging from acetic acid (C2) to melissic acid (C30). The most preferred substrates were capric acid (C10) for Facl1 and palmitic acid (C16) for Facl2, respectively. Both enzymes had an optimal temperature of 60 °C, an optimal pH of 7.5, and required ATP as a cofactor. Thermostability of the enzymes and effects of metal ions, EDTA, SDS and Triton X-100 on the enzyme activity were also investigated. When NG80-2 was cultured with crude oil rather than sucrose as the sole carbon source, upregulation of facl1 and facl2 mRNA was observed by real time RT-PCR. This is the first time that the activity of fatty acid CoA ligases toward long-chain fatty acids up to at least C30 has been demonstrated in bacteria.  相似文献   

6.
Ruegeria pomeroyi DSS‐3 possesses two general pathways for metabolism of dimethylsulphoniopropionate (DMSP), an osmolyte of algae and abundant carbon source for marine bacteria. In the DMSP cleavage pathway, acrylate is transformed into acryloyl‐CoA by propionate‐CoA ligase (SPO2934) and other unidentified acyl‐CoA ligases. Acryloyl‐CoA is then reduced to propionyl‐CoA by AcuI or SPO1914. Acryloyl‐CoA is also rapidly hydrated to 3‐hydroxypropionyl‐CoA by acryloyl‐CoA hydratase (SPO0147). A SPO1914 mutant was unable to grow on acrylate as the sole carbon source, supporting its role in this pathway. Similarly, growth on methylmercaptopropionate, the first intermediate of the DMSP demethylation pathway, was severely inhibited by a mutation in the gene encoding crotonyl‐CoA carboxylase/reductase, demonstrating that acetate produced by this pathway was metabolized by the ethylmalonyl‐CoA pathway. Amino acids and nucleosides from cells grown on 13C‐enriched DMSP possessed labelling patterns that were consistent with carbon from DMSP being metabolized by both the ethylmalonyl‐CoA and acrylate pathways as well as a role for pyruvate dehydrogenase. This latter conclusion was supported by the phenotype of a pdh mutant, which grew poorly on electron‐rich substrates. Additionally, label from [13C‐methyl] DMSP only appeared in carbons derived from methyl‐tetrahydrofolate, and there was no evidence for a serine cycle of C‐1 assimilation.  相似文献   

7.
Acyl‐CoA and acyl‐acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram‐negative bacteria. However, Gram‐positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn‐glycerol‐3‐phosphate by PlsY using an acyl‐phosphate (acyl‐PO4) intermediate. PlsX generates acyl‐PO4 from the acyl‐ACP end‐products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1‐position and endogenous acyl groups were channeled into the 2‐position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl‐ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP‐dependent fatty acid kinase activity, and the acyl‐PO4 was converted to acyl‐ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids.  相似文献   

8.
We examined the expression of choB, encoding cholesterol oxidase of Brevibacterium sterolicum ATCC 21387, in Escherichia coli JM105 and Streptomyces lividans TK23 using various deletion DNA fragments within the 5′-flanking region. The enzyme activity could be detected intracellularly in E. coli only when the 5′-flanking region was reduced to less than 256-bp and choB was transcribed by the lac promoter. A large amount of the enzyme were produced as inactive inclusion bodies when ChoB protein was fused with the NH2-terminal portion of LacZ protein. In contrast, choB with more than 256-bp of the 5′-flanking region was efficiently expressed in S. lividans TK23, and about 85 times as much of the active enzyme (170 U/ml) was secreted into the culture filtrate as with B. sterolicum in flask culture. These results suggest that the promoter of choB exist within 256-bp of the 5′-flanking region and can be efficiently recognized by the RNA polymerase of S. lividans. The characteristics of the enzyme purified from the culture filtrate of the S. lividans transformant and that of B. sterolicum were identical although the NH2-terminal amino acid sequence of the enzyme from the S. lividans transformant was 6 amino acids shorter than that from B. sterolicum.  相似文献   

9.
Lysine acylation is a posttranslational modification used by cells of all domains of life to modulate cellular processes in response to metabolic stress. The paradigm for the role of lysine acylation in metabolism is the acetyl‐coenzyme A synthetase (Acs) enzyme. In prokaryotic and eukaryotic cells alike, Acs activity is downregulated by acetylation and reactivated by deacetylation. Proteins belonging to the bacterial GCN5‐related N‐acetyltransferase (bGNAT) superfamily acetylate the epsilon amino group of an active site lysine, inactivating Acs. A deacetylase can remove the acetyl group, thereby restoring activity. Here we show the Acs from Staphylococcus aureus (SaAcs) activates acetate and weakly activates propionate, but does not activate >C3 organic acids or dicarboxylic acids (e.g. butyrate, malonate and succinate). SaAcs activity is regulated by AcuA (SaAcuA); a type‐IV bGNAT. SaAcuA can acetylate or propionylate SaAcs reducing its activity by >90% and 95% respectively. SaAcuA also succinylated SaAcs, with this being the first documented case of a bacterial GNAT capable of succinylation. Inactive SaAcsAc was deacetylated (hence reactivated) by the NAD+‐dependent (class III) sirtuin protein deacetylase (hereafter SaCobB). In vivo and in vitro evidence show that SaAcuA and SaCobB modulate the level of SaAcs activity in S. aureus.  相似文献   

10.
Lysine acetylation is a posttranslational protein modification mediating protein–protein interactions by recruitment of bromodomains. Investigations of bromodomains have focused so far on the sequence context of the modification site and acyl-modifications installed at lysine side chains. In contrast, there is only little information about the impact of the lysine residue that carries the modification on bromodomain binding. Here, we report a synthesis strategy for L-acetyl-homolysine from L-2-aminosuberic acid by the Lossen rearrangement. Peptide probes containing acetylated homolysine, lysine, and ornithine were generated and used for probing the binding preferences of four bromodomains from three different families. Tested bromodomains showed distinct binding patterns, and one of them bound acetylated homolysine with similar efficiency as the native substrate containing acetyl-lysine. Deacetylation assays with a bacterial sirtuin showed a strong preference for acetylated lysine, despite a broad specificity for N-acyl modifications.  相似文献   

11.
In Salmonella typhimurium, cadA has a role in virulence expression and is an inducible gene that responds to external lysine concentration. In this study, a strain of S. typhimurium carrying a cadA: lacZ fusion was used to determine if the induction of cadA occurred under different lysine concentrations and mildly acid conditions in the presence of short chain fatty acids. Aliquots of an 18-h culture of S. typhimurium were placed on fresh media containing different lysine concentrations at pH 5.8 adjusted by addition of HCl or by 1 M short chain fatty acids (SCFA, acetic, propionic and butyric acid) stock solution. After an induction period of 2 h, -galactosidase activities were assayed. Expression of cadA in rich medium was significantly higher than that of minimal medium at neutral pH and different lysine concentrations. In contrast, at pH 5.8, there was a significant increase in cadA expression, particularly when pH was adjusted using HCl at all lysine levels. Addition of a mixture of organic acids yielded an overall lower cadA expression at all lysine levels studied when compared to HCl. However, each SCFA challenge (individual or as a mixture) caused a high level of expression, both at neutral and acidic pH. Based on these results it is apparent that in the presence of external lysine, SCFA and nutrient availability can influence cadA expression in S. typhimurium.  相似文献   

12.
A bacterial artificial chromosomal library of Nonomuraea sp. ATCC39727 was constructed using Escherichia coliStreptomyces artificial chromosome (ESAC) and screened for the presence of dbv genes known to be involved in the biosynthesis of the glycopeptide A40926. dbv genes were cloned as two large, partially overlapping, fragments and transferred into the host Streptomyces lividans, thus generating strains S. lividans∷NmESAC50 and S. lividans∷NmESAC57. The heterologous expression of Nonomuraea genes in S. lividans was successfully demonstrated by using combined RT–PCR and proteomic approaches. MALDI-TOF analysis revealed that a Nonomuraea ABC transporter is expressed as two isoforms in S. lividans. Moreover, its expression may not require a Nonomuraea positive regulator at all, as it is present at similar levels in both clones even though S. lividans∷NmESAC57 lacks regulatory genes. Considered together, these results show that S. lividans expresses Nonomuraea genes from their own promoters and support the idea that S. lividans can be a good host for genetic analysis of Nonomuraea.  相似文献   

13.
The 2-deoxystreptamine and paromamine are two key intermediates in kanamycin biosynthesis. In the present study, pSK-2 and pSK-7 recombinant plasmids were constructed with two combinations of genes: kanABK and kanABKF and kacA respectively from kanamycin producer Streptomyces kanamyceticus ATCC12853. These plasmids were heterologously expressed into Streptomyces lividans TK24 independently and generated two recombinant strains named S. lividans Sk-2/SL and S. lividans SK-7/SL, respectively. ESI/ MS and ESI-LC/MS analysis of the metabolite from S. lividans SK-2/SL showed that the compound had a molecular mass of 163 [M + H]+, which corresponds to that of 2-deoxystreptamine. ESI/MS and MS/MS analysis of metabolites from S. lividans SK-7/SL demonstrated the production of paromamine with a molecular mass of 324 [M + H]+. In this study, we report the production of paromamine in a heterologous host for the first time. This study will evoke to explore complete biosynthetic pathways of kanamycin and related aminoglycoside antibiotics.  相似文献   

14.
Two enzymes thought to be involved in the biosynthesis of chlorogenic acid have been separated and purified by ion exchange chromatography and their properties studied. These two enzymes, p-coumarate CoA ligase and hydroxycinnamyl CoA: quinate hydroxycinnamyl transferase, acting together catalyse the conversion of p-coumaric acid to 5′-p-coumarylquinic acid and of caffeic acid to chlorogenic acid. The ligase has a higher affinity for p-coumaric than for caffeic acid and will in addition activate a number of other cinnamic acids such as ferulic, isoferulic and m-coumaric acids but not cinnamic acid. The transferase shows higher activity and affinity with p-coumaryl CoA than caffeyl CoA. It also acts with ferulyl CoA but only very slowly. The enzyme shows high specificity for quinic acid; shikimic acid is esterified at only 2% of the rate with quinic acid and glucose is not a substrate. The transferase activity is reversible and both chlorogenic acid and 5′-p-coumarylquinic acids are cleaved in the presence of CoA to form quinic acid and the corresponding hydroxycinnamyl CoA thioester.  相似文献   

15.
Lysine propionylation is a recently identified post‐translational modification that has been observed in proteins such as p53 and histones and is thought to play a role similar to acetylation in modulating protein activity. Members of the sirtuin family of deacetylases have been shown to have depropionylation activity, although the way in which the sirtuin catalytic site accommodates the bulkier propionyl group is not clear. We have determined the 1.8 Å structure of a Thermotoga maritima sirtuin, Sir2Tm, bound to a propionylated peptide derived from p53. A comparison with the structure of Sir2Tm bound to an acetylated peptide shows that hydrophobic residues in the active site shift to accommodate the bulkier propionyl group. Isothermal titration calorimetry data show that Sir2Tm binds propionylated substrates more tightly than acetylated substrates, but kinetic assays reveal that the catalytic rate of Sir2Tm deacylation of propionyl‐lysine is slightly reduced to acetyl‐lysine. These results serve to broaden our understanding of the newly identified propionyl‐lysine modification and the ability of sirtuins to depropionylate, as well as deacetylate, substrates.  相似文献   

16.
17.
Thed-alanine:d-alanine-ligase-related enzymes can have three preferential substrate specificities. Usually, these enzymes synthesized-alanyl-d-alanine. In vancomycin-resistant Gram-positive bacteria, structurally related enzymes synthesized-alanyl-d-lactate or Dalanyl-d-serine. The sequence of internal fragments of eight structurald-alanine:d-alanine ligase genes from enterococci has been determined. Alignment of the deduced amino acid sequences with those of other related enzymes from Gram-negative and Gram-positive bacteria revealed the presence of four distinct sequence patterns in the putative substrate-binding sites, each correlating with specificity to a particular substrate (d-alanine:d-lactate ligases exhibited two patterns). Phylogenetic analysis showed different clusters. The enterococcal subtree was largely superimposable on that derived from 16S rRNA sequences. In lactic acid bacteria, structural divergence due to differences in substrate specificity was observed. Glycopeptide resistance proteins VanA and VanB, the VanC-type ligases, and Dd1A and DdlB from enteric bacteria andHaemophilus influenzae constituted separate clusters. Correspondence to: P. Courvalin  相似文献   

18.
Temperature-sensitive integration plasmids carrying internal fragments of the Streptomyces lividans TK24 recA gene were constructed and used to inactivate the chromosomal recA gene of S. lividans by gene disruption and gene replacement. Integration of these plasmids resulted in recA mutants expressing C-terminally truncated RecA proteins, as deduced from Southern hybridization experiments. Mutants FRECD2 in which the last 42 amino acids, comprising the variable part of bacterial RecA proteins, had been deleted retained the wild-type phenotype. The S. lividans recA mutant FRECD3 produced a RecA protein lacking 87 amino acids probably including the interfilament contact site. FRECD3 was more sensitive to UV and MMS than the wild-type. Its ability to undergo homologous recombination was impaired, but not completely abolished. Integration of the disruption plasmid pFRECD3 in S. coelicolor“Müller” caused the same mutant phenotype as S. lividans FRECD3. In spite of many attempts no S. lividans recA mutants with deletions of 165 C-terminal amino acids or more were isolated. Furthermore, the recA gene could not be replaced by a kanamycin resistance cassette. These experiments indicate a crucial role of the recA gene in ensuring viability of Streptomyces. Received: 20 December 1996 / Accepted: 25 March 1997  相似文献   

19.
Degenerate PCR primers were used to amplify cytochrome P450 gene fragments from the high-GC gram-negative bacteria Amycolatopsis orientalis, which catalyzes the hydroxylation of epothilone B to produce epothilone F. The amplified fragments were used as hybridization probes to identify and clone two intact cytochrome P450 genes. The expression of one of the cloned genes in a Streptomyces lividans transformant resulted in the biotransformation of epothilone B to epothilone F. The conversion of epothilone B to epothilone F by the S. lividans transformant was confirmed by mass spectrometry and nuclear magnetic resonance spectroscopy. An erratum to this article can be found at  相似文献   

20.
A recombinant expression plasmid pYH12, containing the double-mutation glucose isomerase (GIG138PG247D, GI2) coding gene and its natural regulatory sequence, was constructed for site-specific integration in Streptomyces. The resulting plasmid was introduced into Streptomyces lividans TK54 by protoplast transformation and two apramycin-resistance (AmR) transformants, designated GY2 and BY7, respectively, were obtained further based on enzyme assays. These results for polymerase chain reaction (PCR), Dot blot, and recovery of cloned fragments from the transformant chromosome indicated that the GI2 gene was integrated into the S. lividans chromosome by site-specific recombination, and which was further verified by Southern blot. We found that the free form of plasmid pYH12 co-existing with the integrated form was present in S. lividans. SDS-PAGE analysis showed that the GI2 gene was expressed in S. lividans. The intracellular GI2 specific activity was 1.15 U/mg. The stability of integrants demonstrated that the cloned GI2 gene was stably integrated and expressed even in the absence of selective pressure. Received: 28 March 2001 / Accepted: 14 May 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号