首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
该研究在生物信息学分析的基础上,克隆玉米胚胎发生后期丰富蛋白基因(MGL3)的启动子序列(pMGL3),进行非生物逆境应答元件分析以及实时定量PCR验证其非生物逆境胁迫响应特性,构建了pMGL3启动子驱动报告基因(GUS)表达载体,基因枪法转化玉米愈伤组织,通过GUS染色验证pMGL3启动子在非生物逆境胁迫下的驱动活性。再根据启动子序列分析结果,去除不同的顺式作用元件,构建不同长度pMGL3启动子驱动报告基因GUS表达载体,农杆菌介导法转化烟草叶盘,以确定pMGL3启动子的最短活性序列。结果显示:pMGL3启动子长1 554bp,存在多种与非生物逆境胁迫应答相关的调控元件,在干旱、高盐、低温胁迫及脱落酸、乙烯诱导下驱动MGL3基因增量表达,用以驱动GUS基因转化玉米愈伤组织,在高渗、高盐、低温胁迫及脱落酸诱导下具有驱动活性,且截短至325bp仍可保持驱动活性。研究表明,pMGL3启动子的确有非生物逆境诱导启动活性,进一步验证其作用机理后可运用于玉米抗逆转基因研究。  相似文献   

3.
4.
5.
6.
Genome-wide identification and characterisation of F-box family in maize   总被引:1,自引:0,他引:1  
F-box-containing proteins, as the key components of the protein degradation machinery, are widely distributed in higher plants and are considered as one of the largest known families of regulatory proteins. The F-box protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, systematic analysis of the F-box family in maize (Zea mays) has not been reported yet. In this paper, we identified and characterised the maize F-box genes in a genome-wide scale, including phylogenetic analysis, chromosome distribution, gene structure, promoter analysis and gene expression profiles. A total of 359 F-box genes were identified and divided into 15 subgroups by phylogenetic analysis. The F-box domain was relatively conserved, whereas additional motifs outside the F-box domain may indicate the functional diversification of maize F-box genes. These genes were unevenly distributed in ten maize chromosomes, suggesting that they expanded in the maize genome because of tandem and segmental duplication events. The expression profiles suggested that the maize F-box genes had temporal and spatial expression patterns. Putative cis-acting regulatory DNA elements involved in abiotic stresses were observed in maize F-box gene promoters. The gene expression profiles under abiotic stresses also suggested that some genes participated in stress responsive pathways. Furthermore, ten genes were chosen for quantitative real-time PCR analysis under drought stress and the results were consistent with the microarray data. This study has produced a comparative genomics analysis of the maize ZmFBX gene family that can be used in further studies to uncover their roles in maize growth and development.  相似文献   

7.
8.
9.
Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.  相似文献   

10.
11.
12.
Msanne J  Lin J  Stone JM  Awada T 《Planta》2011,234(1):97-107
Abiotic stresses have adverse effects on plant growth and productivity. The homologous RD29A and RD29B genes are exquisitely sensitive to various abiotic stressors. Therefore, RD29A and RD29B gene sequences have potential to confer abiotic stress resistance in crop species grown in arid and semi-arid regions. To our knowledge, no information on the physiological roles of the proteins encoded by RD29A and RD29B are available in the literature. To understand how these proteins function, we used reverse genetic approaches, including identifying rd29a and rd29b T-DNA knockout mutants, and examining the effects of complementing transgenes with the genes under control of their native promoters and chimeric genes with the native promoters swapped. Four binary vectors with the RD29A and RD29B promoters upstream of the cognate RD29A and RD29B cDNAs and as chimeric genes with noncognate promoters were used to transform rd29a and rd29b plants. Cold, drought, and salt induced both genes; the promoter of RD29A was found to be more responsive to drought and cold stresses, whereas the promoter of RD29B was highly responsive to salt stress. Morphological and physiological responses of rd29a and rd29b plants to salt stress were further investigated. Root growth, and photosynthetic properties declined significantly, while solute concentration (Ψπ), water use efficiency (WUE) and δ13C ratio increased under salt stress. Unexpectedly, the rd29a and rd29b knockout mutant lines maintained greater root growth, photosynthesis, and WUE under salt stress relative to control. We conclude that the RD29A and RD29B proteins are unlikely to serve directly as protective molecules.  相似文献   

13.
The C4 grass Zea mays (maize or corn) is the third most important food crop globally after wheat and rice in terms of production and the second most widespread genetically modified (GM) crop, after soybean. Its demand is predicted to increase by 45% by the year 2020. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet, 95% of the maize grown is consumed directly as human food and as an important source of income for the resource—poor rural population. However, its growth, development and production are greatly affected by environmental stresses such as drought and salinization. In this respect, food security in tropical sub-Saharan Africa is increasingly dependent on continuous improvement of tropical maize through conventional breeding involving improved germplasm, greater input of fertilizers, irrigation, and production of two or more crops per year on the same piece of land. Integration of advances in biotechnology, genomic research, and molecular marker applications with conventional plant breeding practices opens tremendous avenues for genetic modifications and fundamental research in tropical maize. The ability to transfer genes into this agronomically important crop might enable improvement of the species with respect to enhanced characteristics, such as enriched nutritional quality, high yield, resistance to herbicides, diseases, viruses, and insects, and tolerance to drought, salt, and flooding. These improvements in tropical maize will ultimately enhance global food production and human health. Molecular approaches to modulate drought stress tolerance are discussed for sub-Saharan Africa, but widely applicable to other tropical genotypes in Central and Latin America. This review highlights abiotic constraints that affect growth, development and production of tropical maize and subsequently focuses on the mechanisms that regulate drought stress tolerance in maize. Biotechnological approaches to manage abiotic stress tolerance in maize will be discussed. The current status of tropical maize transformation using Agrobacterium as a vehicle for DNA transfer is emphasized. This review also addresses the present status of genetically modified organisms (GMOs) regulation in sub-Saharan Africa.  相似文献   

14.
15.
Superoxide dismutase proteins (SODs) are antioxidant enzymes with important roles in abiotic stress responses. The SOD gene family has been systematically analyzed in many plants; however, it is still poorly understood in maize. Here, a bioinformatics analysis of maize SOD gene family was conducted by describing gene structure, conserved motifs, phylogenetic relationships, gene duplications, promoter cis-elements and GO annotations. In total, 13 SOD genes were identified in maize and five members were involved in segmental duplication. Phylogenetic analysis indicated that SODs from maize and other plants comprised two groups, which could be further classified into different subgroups, with most members in the same subgroup having the same subcellular localization. The ZmSOD promoters contained 2-10 stress-responsive cis-elements with different distributions. Heatmap analysis indicated that ZmSODs were expressed in most of the detected tissues and organs. The expression patterns of ZmSODs were investigated under drought and salt treatments by qRT-PCR, and most members were responsive to drought or salt stress, especially some ZmSODs with significant expression changes were identified, such as ZmCSD2 and ZmMSD2, suggesting the important roles of ZmSODs in abiotic stress responses. Our results provide an important basis for further functional study of ZmSODs in future study.  相似文献   

16.
Sorghum, a C4 model plant, has been studied to develop an understanding of the molecular mechanism of resistance to stress. The auxin-response genes, auxin/indole-3-acetic acid (Aux/IAA), auxin-response factor (ARF), Gretchen Hagen3 (GH3), small auxin-up RNAs, and lateral organ boundaries (LBD), are involved in growth/development and stress/defense responses in Arabidopsis and rice, but they have not been studied in sorghum. In the present paper, the chromosome distribution, gene duplication, promoters, intron/exon, and phylogenic relationships of Aux/IAA, ARF, GH3, and LBD genes in sorghum are presented. Furthermore, real-time PCR analysis demonstrated these genes are differently expressed in leaf/root of sorghum and indicated the expression profile of these gene families under IAA, brassinosteroid (BR), salt, and drought treatments. The SbGH3 and SbLBD genes, expressed in low level under natural condition, were highly induced by salt and drought stress consistent with their products being involved in both abiotic stresses. Three genes, SbIAA1, SbGH3-13, and SbLBD32, were highly induced under all the four treatments, IAA, BR, salt, and drought. The analysis provided new evidence for role of auxin in stress response, implied there are cross talk between auxin, BR and abiotic stress signaling pathways.  相似文献   

17.
孙爽  胡颖  陆晶宇  杨章旗  陈虎 《广西植物》2022,42(4):580-595
MYB类转录因子在植物生长发育、代谢、应答生物胁迫和非生物胁迫的响应等生物过程发挥重要作用。为探究马尾松R2R3-MYB基因结构及功能,该研究以转录组数据为研究区域,从中筛选获得了17个马尾松R2R3-MYB基因,利用生物信息学对基因进行理化性质、系统进化树等分析,同时利用荧光定量PCR技术分析基因的组织特异性以及在花发育时期和非生物胁迫下的表达模式。结果表明:(1)17个PmMYBs亚细胞定位于细胞核,均无跨膜结构,且均含有Motif1、Motif2保守基序。系统发育进化树将马尾松PmMYBs划分为9个亚家族,且与火炬松、白云杉等裸子针叶植物关系较近。(2)17个基因均属于组成型表达,但在不同组织的表达量不同;所有基因均参与了花发育和非生物胁迫,不同基因在花发育不同时期的表达存在差异,有7个基因可能参与了雌雄性状转变;大部分基因响应非生物胁迫上调表达,但响应胁迫的时间存在差异;少数基因在胁迫中下调表达,尤其是PmMYB11基因在所有胁迫中均明显下调表达。该研究较系统地分析了马尾松R2R3-MYB基因的结构特征、系统进化及其在花发育时期和非生物胁迫下的表达模式,为深入探究马尾松R2R3...  相似文献   

18.
19.
20.
Abortion of fertilized ovaries at the tip of the ear can generate significant yield losses in maize crops. To investigate the mechanisms involved in this process, 2 maize hybrids were grown in field crops at 2 sowing densities and under 3 irrigation regimes (well‐watered control, drought before pollination, and drought during pollination), in all possible combinations. Samples of ear tips were taken 2–6 days after synchronous hand pollination and used for the analysis of gene expression and sugars. Glucose and fructose levels increased in kernels with high abortion risk. Several FASCICLIN‐LIKE ARABINOGALACTAN PROTEIN (FLA) genes showed negative correlation with abortion. The expression of ZmFLA7 responded to drought only at the tip of the ear. The abundance of arabinogalactan protein (AGP) glycan epitopes decreased with drought and pharmacological treatments that reduce AGP activity enhanced the abortion of fertilized ovaries. Drought also reduced the expression of AthFLA9 in the siliques of Arabidopsis thaliana. Gain‐ and loss‐of‐function mutants of Arabidopsis showed a negative correlation between AthFLA9 and seed abortion. On the basis of gene expression patterns, pharmacological, and genetic evidence, we propose that stress‐induced reductions in the expression of selected FLA genes enhance abortion of fertilized ovaries in maize and Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号