首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous macro-organisms of the Doushantuo macrobiota, which were found in the black carbonaceous mudstone of the upper Neoproterozoic Ediacraan Doushantuo Formation in Jiangkou County, Guizhou Province, China, are considered to live on sea floor by their holdfasts. The appearance and preserved forms of the macroalgal holdfasts may provide some data to the study of the living and buried environments of macrobiota. They lived in the lower energy and clear environment, and fixed on a soupground with rich water (about 79 water). Currents, possibly ocean currents, could pull out the macroalgal holdfasts from the soupground and break off the macroalgal foliations. After such events, the corpses of macro-organisms would be covered in a reduced environment by the deposits. Afterwards, a new community, including regenerating and undying macro-organisms, lived continuously on a new deposit. __________ Translated from Acta Micropalaeontologica Sinica, 2005, 23(2): 154-C164 [译自: 微体古生物学报]  相似文献   

2.
Numerous macro-organisms of the Doushantuo macrobiota, which were found in the black carbonaceous mudstone of the upper Neoproterozoic Ediacraan Doushan-tuo Formation in Jiangkou County, Guizhou Province, China, are considered to live on sea floor by their holdfasts. The appearance and preserved forms of the macroalgal holdfasts may provide some data to the study of the living and buried environments ofmacrobiota. They lived in the lower energy and clear environment, and fixed on a soupground with rich water (about 79% water). Currents, possibly ocean currents, could pull out the macroalgal holdfasts from the soupground and break off the macroalgal foliations. After such events, the corpses of macro-organisms would be covered in a reduced environment by the deposits. Afterwards, a new community, including regenerating and undying macro-organisms, lived continuously on a new deposit.  相似文献   

3.
《Palaeoworld》2021,30(4):602-609
Dickinsonia is an iconic fossil of the Ediacara biota (~575–539 Ma). It was previously known from siliciclastic successions of the White Sea assemblage in Australia, Baltica, and possibly India. Here we describe Dickinsonia sp. from the terminal Ediacaran Shibantan Member limestone (ca. 551–543 Ma) of the Dengying Formation in the Yangtze Gorges area of South China. The stratigraphic distribution of Ediacara-type fossils in the Shibantan Member indicates that this biota uniquely preserves both the White Sea and Nama assemblages in stratigraphic succession. The new data presented here suggests that Dickinsonia had wider paleogeographic and paleoenvironmental distributions, implying its strong dispersal capability and environmental tolerance.  相似文献   

4.
The Ediacaran Doushantuo Formation in South China is underlain by the Cryogenian Nantuo Formation (glacial rocks) and overlain by the late Ediacaran Dengying Formation. It is characterized by well-preserved, large (normally >100 μm in size) spinose acritarchs (LSAs), which have been shown to be probably the only useful biostratigraphic tool for the global correlation of the early- and middle-Ediacaran. Acritarchs are organic microfossils normally known as single-celled eukaryotic organisms (protists). Although recent research suggests that some large spinose acritarchs may represent diapause egg cysts of metazoans, the biological affinities of the Ediacaran spinose acritarchs, especially for those displaying remarkable size ranges, are still debatable.Recently, smaller specimens of the Ediacaran spinose acritarchs have been found in cherts and phosphorites of the Doushantuo Formation in South China. Many described Ediacaran spinose acritarch taxa display large size variation (from tens to hundreds of microns in vesicle diameter), but some taxa only have smaller (<70 μm) specimens. The morphological comparison with Paleozoic counterparts indicates that some Ediacaran spinose acritarchs may have phylogenetic affinity to eukaryotic algae. More evidence, including wall ultra-structure, geochemical analysis and comparison with modern analogs, is needed to understand the biological affinity of the Ediacaran spinose acritarchs. The remarkable radiation of planktonic protists, characterized by abundant, diverse spinose acritarchs, occurred as early as in the late Neoproterozoic, i.e., 40–60 million years earlier than previously thought.  相似文献   

5.
6.
7.
贵州省台江县中寒武世凯里生物群含有丰富的非钙质藻类和具有软躯体后生动物化石 ,它为布尔吉斯页岩型生物群在世界广泛分布提供了更有力的证据。在生物群的宏观藻类中描述了 5个属 5个种 ,包括 2个新属。它们是MarpoliaspissaWalcott、AcinocricusstichusConwayMorrisandRobison、UdotealgaerectaYang、EosargassumsawataYang和RhizophytonzhaoyuanlongiiYang ,并且将凯里生物群中的宏观藻类化石组合与加拿大布尔吉斯页岩生物群中的宏观藻类进行了对比 ,发现两个生物群不仅具有相似的动物化石组成 ,而且宏观藻类化石组成也很相似。  相似文献   

8.
Abundant and well-preserved remains of noncalcareous algae and soft-bodied metazoans were collected from Middle Cambrian Kaili biota in Taijiang county, Guizhou Province, China. These remains provide further evidence for the wide geographic distribution of many Burgess Shale taxa. Among the algae, 5 genera (including two new genera) and 5 species are described. They are Marpolia spissa Walcott, Acinocricus stichus Conway Morris and Robison, Udotealga erecta Yang, Eosargassum sawata Yang, and Rhizophyton zhaoyuanlongii Yang. Contrasting the macroalgal fossil assemblage in the Kaili biota with one in the Burgess Shale biota, it is clear that similarity of the Kaili biota and the Burgess Shale biota is reflected by the same content of not only the soft-bodied metazoans, but also the noncalcareous algae.  相似文献   

9.
The late Ediacaran siliciclastic successions of eastern Newfoundland, Canada, are renowned for their fossils of soft‐bodied macro‐organisms, which may include some of the earliest animals. Despite the potential importance of such fossils for evolutionary understanding, the taxonomic framework within which Ediacaran macrofossils are described is not clearly defined. Rangeomorphs from a newly discovered fossil surface on the Bonavista Peninsula, Newfoundland, require us to reconsider contemporary use of morphological characters to distinguish between genera and species within Ediacaran taxa. The new surface exhibits remarkable preservational fidelity, resolving features smaller than 0.1 mm in dimension in both frondose and non‐frondose taxa. Such preservation permits the recognition of rarely observed fourth‐ and fifth‐order rangeomorph branching, offering unparalleled opportunities to investigate the fine‐scale construction of rangeomorph taxa including Culmofrons plumosa Laflamme et al., 2012. Our observations enable resolution of taxonomic issues relating to rangeomorphs, specifically overlap between the diagnoses of the frondose genera Beothukis Brasier and Antcliffe, 2009 and Culmofrons. We propose a taxonomic framework for all Ediacaran macrofossils whereby gross architecture, the presence/absence of discrete morphological characters and consideration of growth programme are used to distinguish genera, whereas morphometric or continuous characters define taxa at the species level. On the basis of its morphological characters, Culmofrons plumosa is herein synonymized to a species (Beothukis plumosa comb. nov.) within the genus Beothukis. This discussion emphasizes the need to standardize the taxonomic approach used to describe Ediacaran macrofossil taxa at both the genus and species levels, and raises important considerations for future formulation of higher‐level taxonomic groups.  相似文献   

10.
The Ediacaran Period: a new addition to the geologic time scale   总被引:1,自引:0,他引:1  
The International Union of Geological Sciences has approved a new addition to the geologic time scale: the Ediacaran Period. The Ediacaran is the first Proterozoic period to be recognized on the basis of chronostratigraphic criteria and the first internationally ratified, chronostratigraphically defined period of any age to be introduced in more than a century. In accordance with procedures established by the International Commission on Stratigraphy, the base of the Ediacaran Period is defined by a Global Stratotype Section and Point (GSSP) placed at the base of the Nuccaleena Formation cap carbonate directly above glacial diamictites and associated facies at Enorama Creek in the Flinders Ranges of South Australia. Its top is defined by the initial GSSP of the Cambrian Period. The new Ediacaran Period encompasses a distinctive interval of Earth history that is bounded both above and below by equally distinctive intervals. Both chemostratigraphic and biostratigraphic data indicate that the subdivision of the period into two or more series is feasible, and this should be a primary objective of continuing work by the Ediacaran Subcommission of the ICS.  相似文献   

11.
Exceptionally preserved specimens of Ernietta in a shallow‐marine gutter cast from southern Namibia reveal that all previously figured specimens of this iconic Ediacaran megafossil are incomplete, representing only the base of a larger and more complex organism. The complete organism is interpreted as comprising a buried, sand‐filled anchor exhibiting the classical Ernietta morphology that passes distally into a trunk that is crowned by two facing fans that extended into the overlying water column. All parts of Ernietta, from the base of its buried anchor to the tip of its fans, appear to have been composed of a palisade of tubular elements that have been variably preserved. Similarity of tubule morphology despite the inherent difference in function between these constructions supports the view that these tubes were integral to all anatomical parts and functions of Ernietta. This style of architecture, construction and function is unique to the Erniettomorpha, supporting the view that it represents an extinct Ediacaran clade in the early evolution of multi‐cellular life.  相似文献   

12.
Abstract: The hypothesis that the Ediacara biota were giant protozoans is tested by considering the external morphology, internal organization, suggested fossil representatives and molecular phylogeny of the xenophyophores. From this analysis, we find no case to support a direct relationship. Rather, the xenophyophores are here regarded as a group of recently evolved Foraminifera and are hence unlikely to have a record from the Ediacaran Period. Further from the growth dynamics of Foraminifera, they are also unlikely to be related to the Palaeopascichnus organism. We also find significant distinctions in the growth dynamics of Palaeopascichnus and organisms usually referred to the Ediacara biota, such as Charnia and Dickinsonia. Developmental analysis of the Palaeopascichnus– central to the xenophyophore hypothesis – reveals unusual, protozoan features, including evidence for chaotic repair structures, for mergence of coeval forms, as well as complex bifurcations. These observations suggest that Palaeopascichnus is a body fossil of an unidentified protozoan but is unrepresentative of Ediacaran body construction, in general.  相似文献   

13.
The microbiological quality of wastewater in phytotreatment ponds with foliose macroalgae can be influenced by biofilm formation on thallus surface. This hypothesis was tested with an in situ experiment which was carried out in a pond with Ulva spp. receiving wastewater from a land based fish farm at Piombino (Italy). The total bacterial load (TBL) was determined in the inflowing and outflowing waters and a multifactorial design was employed to investigate the effect of different macroalgal biomass. Microbiological analysis revealed a high TBL in the water column (18.4 ± 7.4 × 108 cells ml−1). TBL of inlet water was significantly correlated with quantity and quality of particulate organic matter (POM) of inflowing water, whereas no correlation was found between TBL and POM in the outlet water. A significant decrease in the POM concentration was detected within macroalgal ponds, due to the mechanical action of thalli which favoured POM sedimentation. Nevertheless, great TBLs were found in the outlet water. These findings suggest that TBL probably depended upon macroalgae. Indeed high bacterial density was found on macroalgal thallus surface (~108 cells cm2). Furthermore, high plate counts of faecal bacteria (faecal enterococci) were determined on thallus surface (~ 40 CFU cm2) and outlet water (11 886 ± 3984 CFU 100 ml−1) supporting the evidence that macroalgae negatively affect the microbiological quality of treated water. Bacterial activities in terms of exoenzymatic rates and secondary production were two folds higher in the water within macroalgal beds, than in the open water. These preliminary results suggest that high macroalgal biomass represents a ‚hot spot’ of bacterial density and activity that may affect microbiological quality of the treated water. Bacterial control of inlet water and management of macroalgal biomass through periodic removal are essential for a more efficient treatment of wastewater in phytotreatment ponds.  相似文献   

14.
Unravelling the timing of the metazoan radiation is crucial for elucidating the macroevolutionary processes associated with the Cambrian explosion. Because estimates of metazoan divergence times derived from molecular clocks range from quite shallow (Ediacaran) to very deep (Mesoproterozoic), it has been difficult to ascertain whether there is concordance or quite dramatic discordance between the genetic and geological fossil records. Here, we show using a range of molecular clock methods that the major pulse of metazoan divergence times was during the Ediacaran, which is consistent with a synoptic reading of the Ediacaran macrobiota. These estimates are robust to changes in priors, and are returned with or without the inclusion of a palaeontologically derived maximal calibration point. Therefore, the two historical records of life both suggest that although the cradle of Metazoa lies in the Cryogenian, and despite the explosion of ecology that occurs in the Cambrian, it is the emergence of bilaterian taxa in the Ediacaran that sets the tempo and mode of macroevolution for the remainder of geological time.  相似文献   

15.
Morphologically complex trace fossils, recording the infaunal activities of bilaterian animals, are common in Phanerozoic successions but rare in the Ediacaran fossil record. Here, we describe a trace fossil assemblage from the lower Dunfee Member of the Deep Spring Formation at Mount Dunfee (Nevada, USA), over 500 m below the Ediacaran–Cambrian boundary. Although millimetric in scale and largely not fabric‐disruptive, the Dunfee assemblage includes complex and sediment‐penetrative trace fossil morphologies that are characteristic of Cambrian deposits. The Dunfee assemblage records one of the oldest documented instances of sediment‐penetrative infaunalization, corroborating previous molecular, ichnologic, and paleoecological data suggesting that crown‐group bilaterians and bilaterian‐style ecologies were present in late Ediacaran shallow marine ecosystems. Moreover, Dunfee trace fossils co‐occur with classic upper Ediacaran tubular body fossils in multiple horizons, indicating that Ediacaran infauna and epifauna coexisted and likely formed stable ecosystems.  相似文献   

16.
The expansion of artificial constructs with the rapid economic development in China has led to ecological and environmental emergencies. The extent of the decline in natural resources and environmental conditions has recently been recognized. Identifying “ecological protection redlines”, i.e. ecological limits, to guarantee ecological baselines for natural resources and ecosystem service functions would therefore help to coordinate economic development and to protect ecological resources in the coming years. We used remotely sensed and climatic data to delimit the ecological protection redlines for Zibo, a typical and important city in Shandong province, as an example to illustrate the principles and methodology of ecological protection redlines. The area of the ecological protection redlines for Zibo encompassed 1132.26 km2, accounting for 18.98% of the total area of Zibo, were mainly distributed in the southern regions of the municipality, and consisted of extremely important areas of ecosystem service functions, including water conservation, both soil and water conservation, windbreaks and sand fixation, and the conservation of biodiversity. This area is extremely sensitive, and development is forbidden. Strict measures of management and control should be implemented to protect the long-term effectiveness of ecological protection redlines.  相似文献   

17.
18.
2010年4月—2011年3月对烟台养马岛潮间带大型海藻进行了逐月调查.在养马岛潮间带共设置了A、B两个点,对大型海藻物种组成、生物量以及与环境变化的关系进行了研究.结果表明: 调查区域共有大型海藻35种,其中红藻24种,占总数的68.6%;绿藻6种,占总数的17.1%;褐藻5种,占总数的14.3%.夏季优势种以褐藻和绿藻为主,秋、冬、春季优势种以红藻和褐藻为主,鼠尾藻在各季节中均为优势种.大型海藻生物量呈现夏季高、冬季低的特点,生物量最高值出现在6月,A、B采样点大型海藻生物量最小值分别出现在1月和11月,具有温带海域藻类变化特点.温度、营养盐和pH对大型海藻生物量有显著影响.
  相似文献   

19.
埃迪卡拉化石组成了全球埃迪卡拉纪地层中最具代表性的大型软躯体生物群落.根据其时代、化石种类以及岩性等,埃迪卡拉化石被划分为阿瓦隆、白海、纳玛三个不同组合.产自我国三峡地区埃迪卡拉纪晚期的石板滩生物群是为数不多保存在海相碳酸盐岩中的埃迪卡拉化石生物群.本文利用多元统计分析和网络分析等定量古生物方法划分出四个化石组合,检验...  相似文献   

20.
Precambrian fossils are crucial for our understanding of the evolution of early organisms. Megascopic body fossils are more important because they potentially represent macroorganisms. However, the Precambrian fossil record is sparse and dominated by microfossils and microbial structures. Here we show a new type of megascopic fossils recovered from the Xingmincun Formation (probably Neoproterozoic age), northeastern China. The specimens are flat, flexible (easily corrugated) and discoidal in outline. Concentric or spiral ridges are preserved on both sides. Petrographical thin section examination indicates that the specimen consist of a thin layer of microcrystalline quartz grains (about 20–30 μm thick) wrapped by an outer sheath, composed primarily of chlorites. Field Emission Scanning Electron Microscopy (FE-SEM) coupled with an x-ray energy dispersive spectrometer system (EDX) analysis shows microstructures and relative element abundance of the fossils, but contributes little in solving their biological affinities. The fossils have previously been linked to discoidal impressions of the Ediacara biota. Close examination on new materials indicates that they are radically different from either the Ediacara impressions or any other Precambrian megascopic remains. Concentric or spiral ridges may result from rhythmic growth and the presence of twin specimens may suggest that the organisms undergo asexual reproduction or inhibition of growth in one direction. Referring them to any known fossil or living group has proved to be difficult. We conclude that they represent a distinct group of Precambrian megascopic organisms regardless of their affinities remaining problematic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号