首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Different factors and processes that produce phenotypic variation at the individual, population, or interspecific level can influence or alter the covariance structure among morphological traits. Therefore, studies of the patterns of integration and modularity at multiple levels—static, ontogenetic, and evolutionary, can provide invaluable data on underlying factors and processes that structured morphological variation, directed, or constrained evolutionary changes. Our dataset, consisting of cranium shape data for 14 lizard species from the family Lacertidae, with substantial samples of hatchlings and adults along with their inferred evolutionary relationships, enabled us to assess modularity and morphological integration at all three levels. Five, not mutually exclusive modularity hypotheses of lizard cranium, were tested, and the effects of allometry on intensity and the pattern of integration and modularity were estimated. We used geometric morphometrics to extract symmetric and asymmetric, as well as allometric and nonallometric, components of shape variation. At the static level, firm confirmation of cranial modularity was found for hypotheses which separate anterior and posterior functional compartments of the skull. At the ontogenetic level, two alternative hypotheses (the “anteroposterior” and “neurodermatocranial” hypotheses) of ventral cranial modularity were confirmed. At the evolutionary level, the “neurodermatocranial” hypothesis was confirmed for the ventral cranium, which is in accordance with the pattern observed at the ontogenetic level. The observed pattern of static modularity could be driven by functional demands and can be regarded as adaptive. Ontogenetic modularity and evolutionary modularity show the same developmental origin, indicating conservatism of modularity patterns driven by developmental constraints.  相似文献   

2.

The mammalian neck adopts a variety of postures during daily life and generates numerous head trajectories. Despite its functional diversity, the neck is constrained to seven cervical vertebrae in (almost) all mammals. Given this low number, an unexpectedly high degree of modularity of the mammalian neck has more recently been uncovered. This work aims to review neck modularity in mammals from a developmental, morpho-functional, and paleontological perspective and how high functional diversity evolved in the mammalian neck after the occurrence of meristic limitations. The fixed number of cervical vertebrae and the developmental modularity of the mammalian neck are closely linked to anterior Hox genes expression and strong developmental integration between the neck and other body regions. In addition, basic neck biomechanics promote morpho-functional modularity due to preferred motion axes in the cranio-cervical and cervico-thoracic junction. These developmental and biomechanical determinants result in the characteristic and highly conserved shape variation among the vertebrae that delimits morphological modules. The step-wise acquisition of these unique cervical traits can be traced in the fossil record. The increasing functional specialization of neck modules, however, did not evolve all at once but started much earlier in the upper than in the lower neck. Overall, the strongly conserved modularity in the mammalian neck represents an evolutionary trade-off between the meristic constraints and functional diversity. Although a morpho-functional partition of the neck is common among amniotes, the degree of modularity and the way neck disparity is realized is unique in mammals.

  相似文献   

3.
The mammalian skull has been studied as several separate functional components for decades, but the study of modularity is a more recent, integrative approach toward quantitative examination of independent subsets of highly correlated traits, or modules. Although most studies of modularity focus on developmental and genetic systems, phenotypic modules have been noted in many diverse morphological structures. However, few studies have provided empirical data for comparing modules across higher taxonomic levels, limiting the ability to assess the broader evolutionary significance of modularity. This study uses 18-32 three-dimensional cranial landmarks to analyze phenotypic modularity in 106 mammalian species and demonstrates that cranial modularity is generally conserved in the evolution of therian mammals (marsupials and placentals) but differs between therians and monotremes, the two extant subclasses of Mammalia. Within therians, cluster analyses identify six distinct modules, but only three modules display significant integration in all species. Monotremes display only two highly integrated modules. Specific hypotheses of functional and developmental influences on cranial bones were tested. Theoretical correlation matrices for bones were constructed on the basis of shared function, tissue origin, or mode of ossification, and all three of these models are significantly correlated with observed correlation matrices for the mammalian cranium.  相似文献   

4.
Evolutionary integration (covariation) of traits has long fascinated biologists because of its potential to elucidate factors that have shaped morphological evolution. Studies of tetrapod crania have identified patterns of evolutionary integration that reflect functional or developmental interactions among traits, but no studies to date have sampled widely across the species-rich lissamphibian order Anura (frogs). Frogs exhibit a vast range of cranial morphologies, life history strategies, and ecologies. Here, using high-density morphometrics we capture cranial morphology for 172 anuran species, sampling every extant family. We quantify the pattern of evolutionary modularity in the frog skull and compare patterns in taxa with different life history modes. Evolutionary changes across the anuran cranium are highly modular, with a well-integrated “suspensorium” involved in feeding. This pattern is strikingly similar to that identified for caecilian and salamander crania, suggesting replication of patterns of evolutionary integration across Lissamphibia. Surprisingly, possession of a feeding larval stage has no notable influence on cranial integration across frogs. However, late-ossifying bones exhibit higher integration than early-ossifying bones. Finally, anuran cranial modules show diverse morphological disparities, supporting the hypothesis that modular variation allows mosaic evolution of the cranium, but we find no consistent relationship between degree of within-module integration and disparity.  相似文献   

5.
The theory of morphological integration and modularity predicts that if functional correlations among traits are relevant to mean population fitness, the genetic basis of development will be molded by stabilizing selection to match functional patterns. Yet, how much functional interactions actually shape the fitness landscape is still an open question. We used the anuran skull as a model of a complex phenotype for which we can separate developmental and functional modularity. We hypothesized that functional modularity associated to functional demands of the adult skull would overcome developmental modularity associated to bone origin at the larval phase because metamorphosis would erase the developmental signal. We tested this hypothesis in toad species of the Rhinella granulosa complex using species phenotypic correlation pattern (P‐matrices). Given that the toad species are distributed in very distinct habitats and the skull has important functions related to climatic conditions, we also hypothesized that differences in skull trait covariance pattern are associated to differences in climatic variables among species. Functional and hormonal‐regulated modules are more conspicuous than developmental modules only when size variation is retained on species P‐matrices. Without size variation, there is a clear modularity signal of developmental units, but most species have the functional model as the best supported by empirical data without allometric size variation. Closely related toad species have more similar climatic niches and P‐matrices than distantly related species, suggesting phylogenetic niche conservatism. We infer that the modularity signal due to embryonic origin of bones, which happens early in ontogeny, is blurred by the process of growth that occurs later in ontogeny. We suggest that the species differing in the preferred modularity model have different demands on the orbital functional unit and that species contrasting in climate are subjected to divergent patterns of natural selection associated to neurocranial allometry and T3 hormone regulation.  相似文献   

6.
To predict the response of complex morphological structures to selection it is necessary to know how the covariation among its different parts is organized. Two key features of covariation are modularity and integration. The Drosophila wing is currently considered a fully integrated structure. Here, we study the patterns of integration of the Drosophila wing and test the hypothesis of the wing being divided into two modules along the proximo‐distal axis, as suggested by developmental, biomechanical, and evolutionary evidence. To achieve these goals we perform a multilevel analysis of covariation combining the techniques of geometric morphometrics and quantitative genetics. Our results indicate that the Drosophila wing is indeed organized into two main modules, the wing base and the wing blade. The patterns of integration and modularity were highly concordant at the phenotypic, genetic, environmental, and developmental levels. Besides, we found that modularity at the developmental level was considerably higher than modularity at other levels, suggesting that in the Drosophila wing direct developmental interactions are major contributors to total phenotypic shape variation. We propose that the precise time at which covariance‐generating developmental processes occur and/or the magnitude of variation that they produce favor proximo‐distal, rather than anterior‐posterior, modularity in the Drosophila wing.  相似文献   

7.

Background

Although variation provides the raw material for natural selection and evolution, few empirical data exist about the factors controlling morphological variation. Because developmental constraints on variation are expected to act by influencing trait correlations, studies of modularity offer promising approaches that quantify and summarize patterns of trait relationships. Modules, highly-correlated and semi-autonomous sets of traits, are observed at many levels of biological organization, from genes to colonies. The evolutionary significance of modularity is considerable, with potential effects including constraining the variation of individual traits, circumventing pleiotropy and canalization, and facilitating the transformation of functional structures. Despite these important consequences, there has been little empirical study of how modularity influences morphological evolution on a macroevolutionary scale. Here, we conduct the first morphometric analysis of modularity and disparity in two clades of placental mammals, Primates and Carnivora, and test if trait integration within modules constrains or facilitates morphological evolution.

Principal Findings

We used both randomization methods and direct comparisons of landmark variance to compare disparity in the six cranial modules identified in previous studies. The cranial base, a highly-integrated module, showed significantly low disparity in Primates and low landmark variance in both Primates and Carnivora. The vault, zygomatic-pterygoid and orbit modules, characterized by low trait integration, displayed significantly high disparity within Carnivora. 14 of 24 results from analyses of disparity show no significant relationship between module integration and morphological disparity. Of the ten significant or marginally significant results, eight support the hypothesis that integration within modules constrains morphological evolution in the placental skull. Only the molar module, a highly-integrated and functionally important module, showed significantly high disparity in Carnivora, in support of the facilitation hypothesis.

Conclusions

This analysis of within-module disparity suggested that strong integration of traits had little influence on morphological evolution over large time scales. However, where significant results were found, the primary effect of strong integration of traits was to constrain morphological variation. Thus, within Primates and Carnivora, there was some support for the hypothesis that integration of traits within cranial modules limits morphological evolution, presumably by limiting the variation of individual traits.  相似文献   

8.
9.
10.
Organisms are inherently modular, yet modules also evolve in response to selection for functional integration or functional specialization of traits. For serially repeated homologous traits, there is a clear expectation that selection on the function of individual traits will reduce the integration between traits and subdivide a single ancestral module. The eyespots on butterfly wings are one example of serially repeated morphological traits that share a common developmental mechanism but are subject to natural and sexual selection for divergent functions. Here, I test two hypotheses about the organization of the eyespot pattern into independent dorsal-ventral and anterior-posterior modules, using a graphical modeling technique to examine patterns of eyespot covariation among and within wing surfaces in the butterfly Bicyclus anynana. Although there is a hierarchical and complex pattern of integration among eyespots, the results show a surprising mismatch between patterns of eyespot integration and the developmental and evolutionary eyespot units identified in previous empirical studies. These results are discussed in light of the relationships between developmental, functional, and evolutionary modules, and they suggest that developmental sources of independent trait variation are often masked by developmental sources of trait integration.  相似文献   

11.
Although most studies on integration and modularity have focused on variation among individuals within populations or species, this is not the only level of variation for which integration and modularity exist. Multiple levels of biological variation originate from distinct sources: genetic variation, phenotypic plasticity resulting from environmental heterogeneity, fluctuating asymmetry from random developmental variation and, at the interpopulation or interspecific levels, evolutionary change. The processes that produce variation at all these levels can impart integration or modularity on the covariance structure among morphological traits. In turn, studies of the patterns of integration and modularity can inform about the underlying processes. In particular, the methods of geometric morphometrics offer many advantages for such studies because they can characterize the patterns of morphological variation in great detail and maintain the anatomical context of the structures under study. This paper reviews biological concepts and analytical methods for characterizing patterns of variation and for comparing across levels. Because research comparing patterns across level has only just begun, there are relatively few results, generalizations are difficult and many biological and statistical questions remain unanswered. Nevertheless, it is clear that research using this approach can take advantage of an abundance of new possibilities that are so far largely unexplored.  相似文献   

12.
A major goal in postsynthesis evolutionary biology has been to better understand how complex interactions between traits drive movement along and facilitate the formation of distinct evolutionary pathways. I present analyses of a character matrix sampled across the haplorrhine skeleton that revealed several modules of characters displaying distinct patterns in macroevolutionary disparity. Comparison of these patterns to those in neurological development showed that early ape evolution was characterized by an intense regime of evolutionary and developmental flexibility. Shifting and reduced constraint in apes was met with episodic bursts in phenotypic innovation that built a wide array of functional diversity over a foundation of shared developmental and anatomical structure. Shifts in modularity drove dramatic evolutionary changes across the ape body plan in two distinct ways: (1) an episode of relaxed integration early in hominoid evolution coincided with bursts in evolutionary rate across multiple character suites; (2) the formation of two new trait modules along the branch leading to chimps and humans preceded rapid and dramatic evolutionary shifts in the carpus and pelvis. Changes to the structure of evolutionary mosaicism may correspond to enhanced evolvability that has a “preadaptive” effect by catalyzing later episodes of dramatic morphological remodeling.  相似文献   

13.
The role of developmental and genetic integration for evolution is contentious. One hypothesis states that integration acts as a constraint on evolution, whereas an alternative is that developmental and genetic systems evolve to match the functional modularity of organisms. This study examined a morphological structure, the cricket wing, where developmental and functional modules are discordant, making it possible to distinguish the two alternatives. Wing shape was characterized with geometric morphometrics, quantitative genetic information was extracted using a full‐sibling breeding design, and patterns of developmental integration were inferred from fluctuating asymmetry of wing shape. The patterns of genetic, phenotypic, and developmental integration were clearly similar, but not identical. Heritabilities for different shape variables varied widely, but no shape variables were devoid of genetic variation. Simulated selection for specific shape changes produced predicted responses with marked deflections due to the genetic covariance structure. Three hypotheses of modularity according to the wing structures involved in sound production were inconsistent with the genetic, phenotypic, or developmental covariance structure. Instead, there appears to be strong integration throughout the wing. The hypothesis that genetic and developmental integration evolve to match functional modularity can therefore be rejected for this example.  相似文献   

14.
Phenotypic integration and modularity represent important factors influencing evolutionary change. The mammalian cervical vertebral column is particularly interesting in regards to integration and modularity because it is highly constrained to seven elements, despite widely variable morphology. Previous research has found a common pattern of integration among quadrupedal mammals, but integration patterns also evolve in response to locomotor selective pressures like those associated with hominin bipedalism. Here, I test patterns of covariation in the cervical vertebrae of three hominoid primates (Hylobates, Pan, Homo) who engage in upright postures and locomotion. Patterns of integration in the hominoid cervical vertebrae correspond generally to those previously found in other mammals, suggesting that integration in this region is highly conserved, even among taxa that engage in novel positional behaviors. These integration patterns reflect underlying developmental as well as functional modules. The strong integration between vertebrae suggests that the functional morphology of the cervical vertebral column should be considered as a whole, rather than in individual vertebrae. Taxa that display highly derived morphologies in the cervical vertebrae are likely exploiting these integration patterns, rather than reorganizing them. Future work on vertebrates without cervical vertebral number constraints will further clarify the evolution of integration in this region.  相似文献   

15.
Within-individual variation in virtually every conceivable morphological and functional feature of reiterated structures is a pervasive feature of plant phenotypes. In particular, architectural effects, regular, repeatable patterns of intra-individual variation in form and function that are associated with position are nearly ubiquitous. Yet, flowers also are predicted to be highly integrated. For animal-pollinated plants, the coordination of multiple organs within each flower is required to achieve the complex functions of pollinator attraction and orientation, pollen donation and pollen receipt. To the extent that pollinators may select for multiple independent functions, phenotypic integration within flowers may also be modular. That is, subsets of floral structures may be integrated but vary independently of other subsets of structures that are themselves integrated. How can phenotypic integration and modularity be understood within the context of architectural effects? This essay reviews recent research on patterns of floral integration and modularity and explores the potential for spatial and temporal changes in the selective environment of individual flowers to result in positional variation in patterns of morphological integration.  相似文献   

16.
The evolutionary integration of complex morphological structures is a macroevolutionary pattern in which morphogenetic components evolve in a coordinated fashion, which can result from the interplay among processes of developmental, genetic integration, and different types of selection. We tested hypotheses of ecological versus developmental factors underlying patterns of within‐species and evolutionary integration in the mandible of phyllostomid bats, during the most impressive ecological and morphological radiation among mammals. Shape variation of mandibular morphogenetic components was associated with diet, and the transition of integration patterns from developmental to within‐species to evolutionary was examined. Within‐species (as a proxy to genetic) integration in different lineages resembled developmental integration regardless of diet specialization, however, evolutionary integration patterns reflected selection in different mandibular components. For dietary specializations requiring extensive functional changes in mastication patterns or biting, such as frugivores and sanguivores, the evolutionary integration pattern was not associated with expected within‐species or developmental integration. On the other hand, specializations with lower mastication demands or without major functional reorganization (such as nectarivores and carnivores), presented evolutionary integration patterns similar to the expected developmental pattern. These results show that evolutionary integration patterns are largely a result of independent selection on specific components regardless of developmental modules.  相似文献   

17.
ABSTRACT: BACKGROUND: Hybridization is often seen as a process dampening phenotypic differences accumulated between diverging evolutionary units. For a complex trait comprising several relatively independent modules, hybridization may however simply generate new phenotypes, by combining into a new mosaic modules inherited from each parental groups and parts intermediate with respect to the parental groups. We tested this hypothesis by studying mandible size and shape in a set of first and second generation hybrids resulting from inbred wild-derived laboratory strains documenting two subspecies of house mice, Musmusculusdomesticus and Musmusculusmusculus. Phenotypic variation of the mandible was divided into nested partitions of developmental, evolutionary and functional modules. RESULTS: The size and shape of the modules were differently influenced by hybridization. Some modules seemed to be the result of typical additive effects with hybrids intermediate between parents, some displayed a pattern expected in the case of monogenic dominance, whereas in other modules, hybrids were transgressive. The result is interpreted as the production of novel mandible morphologies. Beyond this modularity, modules in functional interaction tended to display significant covariations. CONCLUSIONS: Modularity emerges as a source of novel morphological variation by its simple potential to combine different parts of the parental phenotypes into a novel offspring mosaic of modules. This effect is partly counterbalanced by bone remodeling insuring an integration of the mosaic mandible into a functional ensemble, adding a non-genetic component to the production of transgressive phenotypes in hybrids.  相似文献   

18.
Modules can be defined as quasi-autonomous units that are connected loosely with each other within a system. A need for the concept of modularity has emerged as we deal with evolving organisms in evolutionary developmental research, especially because it is unknown how genes are associated with anatomical patterns. One of the strategies to link genotypes with phenotypes could be to relate developmental modules with morphological ones. To do this, it is fundamental to grasp the context in which certain anatomical units and developmental processes are associated with each other specifically. By identifying morphological modularities as units recognized by some categories of general homology as established by comparative anatomy, it becomes possible to identify developmental modules whose genetic components exhibit coextensive expressions. This permits us to distinguish the evolutionary modification in which the identical morphological module simply alters its shape for adaptation, without being decoupled from the functioning gene network (‘coupled modularities’), from the evolution of novelty that involves a heterotopic shift between the anatomical and developmental modules. Using this formulation, it becomes possible, within the realm of Geoffroy's homologous networks, to reduce morphological homologies to developmental mechanistic terms by dissociating certain classes of modules that are often associated with actual shapes and functions.  相似文献   

19.
The cranial airways are in the center of the human face. Therefore variation in the size and shape of these central craniofacial structures could have important consequences for the surrounding midfacial morphology during development and evolution. Yet such interactions are unclear because one school of thought, based on experimental and developmental evidence, suggests a relative independence (modularity) of these two facial compartments, whereas another one assumes tight morphological integration. This study uses geometric morphometrics of modern humans (N = 263) and 40 three‐dimensional‐landmarks of the skeletal nasopharynx and nasal cavity and outer midfacial skeleton to analyze these questions in terms of modularity. The sizes of all facial compartments were all strongly correlated. Shape integration was high between the cranial airways and the outer midfacial skeleton and between the latter and the anterior airway openings (skeletal regions close to and including piriform aperture). However, no shape integration was detected between outer midface and posterior airway openings (nasopharynx and choanae). Similarly, no integration was detected between posterior and anterior airway openings. This may reflect functional modularization of nasal cavity compartments related to respiratory physiology and differential developmental interactions with the face. Airway size likely relates to the energetics of the organism, whereas airways shape might be more indicative of respiratory physiology and climate. Although this hypothesis should be addressed in future steps, here we suggest that selection on morphofunctional characteristics of the cranial airways could have cascading effects for the variation, development, and evolution of the human face. Am J Phys Anthropol 152:287–293, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
The origins of and potential constraints on the evolution of phenotypic diversity remain one of the central questions in evolutionary biology. The vertebrate skeleton is governed by historical, developmental, architectural, and functional constraints that all play a role in establishing its final form. Whereas the factors underlying shape variation in single bones are fairly well understood, this is less so the case for complex assemblages of bones as observed in the cranium or mandible. It is often suggested that the final phenotype must reflect the mechanical constraints imposed by the loading of the skeleton as bones remodel to withstand loading. Yet, in the cranium, in contrast to the mandible, the final phenotype is likely constrained by demands other than loading including the protection of sensory systems and the brain. Architectural design constraints may further limit the final form of complex units like the vertebrate cranium. Here we use geometric morphometric approaches to quantify the shape of the cranium and mandible in a lizard and test whether the observed shape co-varies with both the muscles attaching to these structures as well as functional traits such as bite force. Our results show that co-variation between the cranium and mandible is significant and likely driven by the muscles that link the two systems. Moreover, our results show that the patterns of co-variation are stronger between the mandible and ventral side of the cranium. Muscular cross sectional areas, bite force, and the ventral side of the cranium, also co-vary more than the dorsal side of the cranium does with muscle properties and function. Finally, our results show sex-specific patterns of co-variation with males showing a stronger degree of integration between the cranium, mandible, muscles and bite force suggesting that constraints on bite force drive the evolution of cranial shape to a greater extent in males compared to females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号