首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The master regulator CsgD switches planktonic growth to biofilm formation by activating synthesis of curli fimbriae and cellulose in Enterobacteriaceae. CsgD was classified to be the LuxR response regulatory family, while its cognate sensor histidine kinase has not been identified yet. CsgD consists of a C‐terminal DNA binding domain and an N‐terminal regulatory domain that provokes the upstream signal transduction to further modulate its function. We provide the crystal structure of Salmonella Typhimurium CsgD regulatory domain, which reveals an atypical β5α5 response regulatory receiver domain folding with the α2 helix representing as a disorder loop compared to the LuxR/FixJ canonical response regulator, and the structure indicated a noteworthy α5 helix similar to the non‐canonical master regulator VpsT receiver domain α6. CsgD regulatory domain assembles with two dimerization interfaces mainly through α1 and α5, which has shown similarity to the c‐di‐GMP independent and stabilized dimerization interface of VpsT from Vibrio cholerae respectively. The potential phosphorylation site D59 is directly involved in the interaction of interfaces I and mutagenesis studies indicated that both dimerization interfaces could be crucial for CsgD activity. The structure reveals important molecular details for the dimerization assembly of CsgD and will shed new insight into its regulation mechanism.  相似文献   

4.
5.
6.
7.
8.
9.
The chemotaxis system of Escherichia coli makes use of an extended two-component sensory response pathway in which CheA, an autophosphorylating protein histidine kinase (PHK) rapidly passes its phosphoryl group to CheY, a phospho-accepting response regulator protein (RR). The CheA-->CheY phospho-transfer reaction is 100-1000 times faster than the His-->Asp phospho-relays that operate in other (non-chemotaxis) two-component regulatory systems, suggesting that CheA and CheY have unique features that enhance His-->Asp phospho-transfer kinetics. One such feature could be the P2 domain of CheA. P2 encompasses a binding site for CheY, but an analogous RR-binding domain is not found in other PHKs. In previous work, we removed P2 from CheA, and this decreased the catalytic efficiency of CheA-->CheY phospho-transfer by a factor of 50-100. Here we examined the kinetics of the binding interactions between CheY and P2. The rapid association reaction (k(assn) approximately 10(8)M(-1)s(-1) at 25 degrees C and micro=0.03 M) exhibited a simple first-order dependence on P2 concentration and appeared to be largely diffusion-limited. Ionic strength (micro) had a moderate effect on k(assn) in a manner predictable based on the calculated electrostatic interaction energy of the protein binding surfaces and the expected Debye-Hückel shielding. The speed of binding reflects, in part, electrostatic interactions, but there is also an important contribution from the inherent plasticity of the complex and the resulting flexibility that this allows during the process of complex formation. Our results support the idea that the P2 domain of CheA contributes to the overall speed of phospho-transfer by promoting rapid association between CheY and CheA. However, this alone does not account for the ability of the chemotaxis system to operate much more rapidly than other two-component systems: k(cat) differences indicate that CheA and CheY also achieve the chemical events of phospho-transfer more rapidly than do PHK-RR pairs of slower systems.  相似文献   

10.
11.
12.
BIA技术(biomolecular interaction analysis)即生物分子相互作用分析技术的应用范围相当广泛.这里介绍利用BIAcore研究信号传导中各蛋白质之间的相互作用及多聚物的形成及机理以及转录调节蛋白与启动子(DNA)的研究.  相似文献   

13.
The Frz pathway of Myxococcus xanthus controls cell reversal frequency to support directional motility during swarming and fruiting body formation. Previously, we showed that phosphorylation of the response regulator FrzZ correlates with reversal frequencies, suggesting that this activity represents the output of the Frz pathway. Here, we tested the effect of different expression levels of FrzZ and its cognate kinase FrzE on M. xanthus motility. FrzZ overexpression caused a slight increase in phosphorylation and reversals. By contrast, FrzE overexpression abolished phosphorylation of FrzZ; this inhibition required the response regulator domain of FrzE. FrzZ phosphorylation was restored when both FrzE and FrzZ were overexpressed together. Our results show that the response regulator domain of FrzE is a negative regulator of FrzE kinase activity. This inhibition can be modulated by FrzZ, which acts as a positive regulator. Interestingly, fluorescence microscopy revealed that FrzZ and FrzE localize differently: FrzE colocalizes with the FrzCD receptor and the nucleoid, while FrzZ shows dispersed and polar localization. However, FrzZ binds tightly to the truncated variant FrzEΔCheY. This indicates that the response regulator domain of FrzE is required for the interaction between FrzE and FrzZ to be transient, providing an unexpected regulatory output to the Frz pathway.  相似文献   

14.
Recent progress is summarized on the mechanism of phototransduction by sensory rhodopsin I (SR-I), a phototaxis receptor inHalobacterium halobium. Two aspects are emphasized: (i)The coupling of retinal isomerization to protein conformational changes. Retinal analogs have been used to probe chromophore-apoprotein interactions during the receptor activation process. One of the most important results is the finding of a steric trigger deriving from the interaction of residues on the protein with a methyl group near the isomerizing bond of the retinal (at carbon 13). Recent work on molecular genetic methods to further probe structure/function includes the synthesis and expression of an SR-I apoprotein gene designed for residue replacements by cassette mutagenesis, and transformation of anH. halobium mutant lacking all retinylidene proteins known in this species to SR-I+ and bacteriorhodopsin (BR)+. (ii)The relay of the SR-I signal to a post-receptor component. A carboxylmethylated protein (MPP-I) associated with SR-I and found in theH. halobium membrane exhibits homology with the signaling domain of eubacterial chemotaxis transducers (e.g.,Escherichia coli Tar, Tsr, and Trg proteins), suggesting a model based on SR-I MPP-I signal relay.  相似文献   

15.
Two-component signal-transducing systems (TCS) consist of a histidine kinase (HK) that senses a specific environmental stimulus, and a cognate response regulator (RR) that mediates the cellular response. Most HK are membrane-anchored proteins harboring two domains: An extracytoplasmic input and a cytoplasmic transmitter (or kinase) domain, separated by transmembrane helices that are crucial for the intramolecular information flow. In contrast to the cytoplasmic domain, the input domain is highly variable, reflecting the plethora of different signals sensed. Intramembrane-sensing HK (IM-HK) are characterized by their short input domain, consisting solely of two putative transmembane helices. They lack an extracytoplasmic domain, indicative for a sensing process at or from within the membrane interface. Most proteins sharing this domain architecture are found in Firmicutes bacteria. Two major groups can be differentiated based on sequence similarity and genomic context: (1) BceS-like IM-HK that are functionally and genetically linked to ABC transporters, and (2) LiaS-like IM-HK, as part of three-component systems. Most IM-HK sense cell envelope stress, and identified target genes are often involved in maintaining cell envelope integrity, mediating antibiotic resistance, or detoxification processes. Therefore, IM-HK seem to constitute an important mechanism of cell envelope stress response in low G+C Gram-positive bacteria.  相似文献   

16.
17.
18.
19.
The signal recognition particle (SRP) is a conserved ribonucleoprotein complex that binds to targeting sequences in nascent secretory and membrane proteins. The SRP guides these proteins to the cytoplasmic membrane in prokaryotes and the endoplasmic reticulum membrane in eukaryotes via an interaction with its cognate receptor. The E. coli SRP is relatively small and is currently used as a model for fundamental and applied studies on translation-linked protein targeting. In this review recent advances in our understanding of the structure and function of the E. coli SRP and its receptor are discussed. In particular, the interplay between the SRP pathway and other targeting routes, the role of guanine nucleotides in cycling of the SRP and the substrate specificity of the SRP are highlighted  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号