首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The vesicle-inducing protein in plastids (VIPP1) was suggested to play a role in thylakoid membrane formation via membrane vesicles. As this functional assignment is under debate, we investigated the function of VIPP1 in Chlamydomonas reinhardtii. Using immunofluorescence, we localized VIPP1 to distinct spots within the chloroplast. In VIPP1-RNA interference/artificial microRNA cells, we consistently observed aberrant, prolamellar body-like structures at the origin of multiple thylakoid membrane layers, which appear to coincide with the immunofluorescent VIPP1 spots and suggest a defect in thylakoid membrane biogenesis. Accordingly, using quantitative shotgun proteomics, we found that unstressed vipp1 mutant cells accumulate 14 to 20% less photosystems, cytochrome b(6)f complex, and ATP synthase but 30% more light-harvesting complex II than control cells, while complex assembly, thylakoid membrane ultrastructure, and bulk lipid composition appeared unaltered. Photosystems in vipp1 mutants are sensitive to high light, which coincides with a lowered midpoint potential of the Q(A)/Q(A)(-) redox couple and increased thermosensitivity of photosystem II (PSII), suggesting structural defects in PSII. Moreover, swollen thylakoids, despite reduced membrane energization, in vipp1 mutants grown on ammonium suggest defects in the supermolecular organization of thylakoid membrane complexes. Overall, our data suggest a role of VIPP1 in the biogenesis/assembly of thylakoid membrane core complexes, most likely by supplying structural lipids.  相似文献   

2.
VESICLE-INDUCING PROTEIN IN PLASTIDS1 (VIPP1), proposed to play a role in thylakoid biogenesis, is conserved in photosynthetic organisms and is closely related to Phage Shock Protein A (PspA), which is involved in plasma membrane integrity in Escherichia coli. This study showed that chloroplasts/plastids in Arabidopsis thaliana vipp1 knockdown and knockout mutants exhibit a unique morphology, forming balloon-like structures. This altered morphology, as well as lethality of vipp1, was complemented by expression of VIPP1 fused to green fluorescent protein (VIPP1-GFP). Several lines of evidence show that the balloon chloroplasts result from chloroplast swelling related to osmotic stress, implicating VIPP1 in the maintenance of plastid envelopes. In support of this, Arabidopsis VIPP1 rescued defective proton leakage in an E. coli pspA mutant. Microscopy observation of VIPP1-GFP in transgenic Arabidopsis revealed that VIPP1 forms large macrostructures that are integrated into various morphologies along the envelopes. Furthermore, live imaging revealed that VIPP1-GFP is highly mobile when chloroplasts are subjected to osmotic stress. VIPP1-GFP showed dynamic movement in the transparent area of spherical chloroplasts, as the fluorescent molecules formed filament-like structures likely derived from disassembly of the large VIPP1 complex. Collectively, our data demonstrate that VIPP1 is a multifunctional protein in chloroplasts that is critically important for envelope maintenance.  相似文献   

3.
The vesicle-inducing protein in plastids (VIPP1) is essential for the biogenesis of thylakoid membranes in cyanobacteria and plants. VIPP1 and its bacterial ancestor PspA form large homo-oligomeric rings of >1 MDa. We recently demonstrated that VIPP1 interacts with the chloroplast J-domain co-chaperone CDJ2 and its chaperone partner HSP70B, and hypothesized that the chaperones might be involved in the assembly and/or disassembly of VIPP1 oligomers. To test this hypothesis, we analysed the composition of VIPP1/chaperone complexes in Chlamydomonas reinhardtii cell extracts and monitored effects of the chaperones on VIPP1 assembly states in vitro. We found that CGE1, the chloroplast GrpE homologue, is also part of complexes with HSP70B, CDJ2 and VIPP1. We observed that CDJ2-VIPP1 accumulated as low- and high-molecular-weight complexes in ATP-depleted cell extracts, but as intermediate-size complexes in extracts supplemented with ATP. This was consistent with a role for the chaperones in VIPP1 assembly and disassembly. Using purified proteins, we could demonstrate that the chaperones indeed facilitated both the assembly and disassembly of VIPP1 oligomers. Electron microscopy studies revealed that, in contrast to PspA, VIPP1 rings assembled into rod-shaped supercomplexes that were morphologically similar to microtubule-like structures observed earlier in various plastid types. VIPP1 rods, too, were disassembled by the chaperones, and chaperone-mediated rod disassembly also occurred when VIPP1 lacked an approximately 30-aa C-terminal extension present in VIPP1 homologues but absent in PspA. By regulating the assembly state of VIPP1, the chloroplast HSP70 chaperone system may play an important role in the maintenance/biogenesis of thylakoid membranes.  相似文献   

4.
The Arabidopsis genome contains seven members of Hsp90. Mutations in plastid AtHsp90.5 were reported to cause defects in chloroplast development and embryogenesis. However, the exact function of plastid AtHsp90.5 has not yet been defined. In this study, albino seedlings were found among AtHsp90.5 transformed Arabidopsis, which were revealed to be AtHsp90.5 co‐suppressed plants. The accumulation of photosynthetic super‐complexes in the albinos was decreased, and expression of genes involved in photosynthesis was significantly down‐regulated. AtHsp90.5 T‐DNA insertion mutants were embryo‐lethal with embryo arrested at the heart stage. Further investigation showed AtHsp90.5 expression was up‐regulated in the siliques at 4 days post anthesis (DPA). Confocal microscopy proved AtHsp90.5 was located in the chloroplasts. Plastid development in the AtHsp90.5 mutants and co‐suppressed plants was seriously impaired, and few thylakoid membranes were observed, indicating the involvement of AtHsp90.5 in chloroplast biogenesis. AtHsp90.5 was found to interact with vesicle‐inducing protein in plastids 1 (VIPP1) by bimolecular fluorescence complementation system. The ratio between VIPP1 oligomers and monomers in AtHsp90.5 co‐suppressed plants drastically shifted toward the oligomeric state. Our study confirmed that AtHsp90.5 is vital for chloroplast biogenesis and embryogenesis. Further evidence also suggested that AtHsp90.5 may help in the disassembly of VIPP1 for thylakoid membrane formation and/or maintenance.  相似文献   

5.
Knowledge of the interaction partners of a protein of interest may provide important information on its function. Common to currently available tools for the identification of protein–protein interactions, however, is their high rates of false positives. Only recently an assay was reported that allowed for the unequivocal identification of protein–protein interactions in mammalian cells in a single experiment. This assay, termed quantitative immunoprecipitation combined with knockdown (QUICK), combines RNAi, stable isotope labeling with amino acids in cell culture, immunoprecipitation, and quantitative MS. We are using the unicellular green alga Chlamydomonas reinhardtii to understand the roles of chaperones in chloroplast biogenesis. The goal of this work was to apply QUICK to Chlamydomonas for the identification of novel interaction partners of vesicle‐inducing protein in plastids 1 (VIPP1), a protein required for the biosynthesis/maintenance of thylakoid membranes and known substrate of chloroplast HSP70B. We report here a robust QUICK protocol for Chlamydomonas that has been improved (i) by introducing a cross‐linking step (‐X) to improve protein complex stability and (ii) by including a control for the correction of unequal immunoprecipitation and/or labeling efficiencies. Using QUICK and cross‐linking we could verify that HSP70B and CGE1 form a complex with VIPP1 and could also demonstrate that chloroplast HSP90C is part of this complex. Moreover, we could show that the chaperones interact with VIPP1 also in membrane fractions.  相似文献   

6.
The vesicle inducing protein in plastids (VIPP1) is an essential protein for the biogenesis of thylakoids in modern cyanobacteria, algae, and plants. Although its exact function is still not clear, recent work has provided important hints to its mode of action. We believe that these data are consistent with a structural role of VIPP1 within thylakoid centers, which are considered as sites from which thylakoid membranes emerge and at which the biogenesis at least of photosystem II is thought to occur. Here we present a model that may serve as starting point for future research.  相似文献   

7.
J-domain cochaperones confer functional specificity to their heat shock protein (HSP)70 partner by recruiting it to specific substrate proteins. To gain insight into the functions of plastidic HSP70s, we searched in Chlamydomonas databases for expressed sequence tags that potentially encode chloroplast-targeted J-domain cochaperones. Two such cDNAs were found: the encoded J-domain proteins were named chloroplast DnaJ homolog 1 and 2 (CDJ1 and CDJ2). CDJ2 was shown to interact with a approximately 28-kDa protein that by mass spectrometry was identified as the vesicle-inducing protein in plastids 1 (VIPP1). In fractionation experiments, CDJ2 was detected almost exclusively in the stroma, whereas VIPP1 was found in low-density membranes, thylakoids, and in the stroma. Coimmunoprecipitation and mass spectrometry analyses identified stromal HSP70B as the major protein interacting with soluble VIPP1, and, as confirmed by cross-linking data, as chaperone partner of CDJ2. In blue native-PAGE of soluble cell extracts, CDJ2 and VIPP1 comigrated in complexes of >669, approximately 150, and perhaps approximately 300 kDa. Our data suggest that CDJ2, presumably via coiled-coil interactions, binds to VIPP1 and presents it to HSP70B in the ATP state. Our findings and the previously reported requirement of VIPP1 for the biogenesis of thylakoid membranes point to a role for the HSP70B/CDJ2 chaperone pair in this process.  相似文献   

8.
The expression of the 23 kDa plastid heat-shock protein (HSP) of Chenopodium rubrum has been studied at various light intensities at a temperature of 38°C where the 23 kDa protein accumulates to its highest levels. It was observed that the level of mRNA which is induced at this heat-shock temperature is independent of the light intensity between 0 and 1000 W m−2. Labelling in vivo of all investigated HSP is also not dependent on the light fluxes applied. In clear contrast the accumulation of the mature chloroplast HSP 23 is light dependent: while almost no protein is detectable in the dark the level of the accumulated protein reaches a maximum at a light intensity of 300 W m−2. The accumulated levels of HSP 23 correlate well with resistance against photoinhibition; photoinhibitory effects are observed at a light intensity of 300 W m−2 or above as measured by the decline of PS II activity. When high light intensities are applied during recovery from heat shock the amounts of HSP 23 stay elevated for a longer time and at a higher level than at the standard light intensity of 10 W m−2. This appears to be a peculiar property of the plastid HSP 23 as the accumulation of HSP 17 and 70, as analysed by Western blot, is not influenced by light. When under particular stress conditions the levels of HSP 23 remain low a protein of 31 kDa accumulates that reacts with the antibody to HSP 23 and might represent the precursor of HSP 23.  相似文献   

9.
Truncated light-harvesting antenna 1 (TLA1) is a nuclear gene proposed to regulate the chlorophyll (Chl) antenna size in Chlamydomonas reinhardtii. The Chl antenna size of the photosystems and the chloroplast ultrastructure were manipulated upon TLA1 gene over-expression and RNAi downregulation. The TLA1 over-expressing lines possessed a larger chlorophyll antenna size for both photosystems and contained greater levels of Chl b per cell relative to the wild type. Conversely, TLA1 RNAi transformants had a smaller Chl antenna size for both photosystems and lower levels of Chl b per cell. Western blot analyses of the TLA1 over-expressing and RNAi transformants showed that modulation of TLA1 gene expression was paralleled by modulation in the expression of light-harvesting protein, reaction centre D1 and D2, and VIPP1 genes. Transmission electron microscopy showed that modulation of TLA1 gene expression impacts the organization of thylakoid membranes in the chloroplast. Over-expressing lines showed well-defined grana, whereas RNAi transformants possessed loosely held together and more stroma-exposed thylakoids. Cell fractionation suggested localization of the TLA1 protein in the inner chloroplast envelope and potentially in association with nascent thylakoid membranes, indicating a role in Chl antenna assembly and thylakoid membrane biogenesis. The results provide a mechanistic understanding of the Chl antenna size regulation by the TLA1 gene.  相似文献   

10.
11.
The precursor to the nuclear-coded 22-kDa heat-shock protein of chloroplasts (HSP 22) has been transported into isolated intact chloroplasts from heat-shocked plants. The localization of the mature protein in the chloroplast membrane was investigated. We have shown that the processed HSP 22 of pea was not bound to envelopes and found predominantly in thylakoid membranes. The binding of HSP 22 was stable in the presence of high salt concentrations. Solubilization of thylakoid membranes with Triton X-100 and phase partitioning with Triton X-114 indicate an intrinsic localization of HSP 22 or, alternatively, a non-covalent association with integral membrane protein(s). After fractionation into grana and stroma lamellae, HSP 22 was found mostly in the grana-membrane subfraction.  相似文献   

12.
13.
VIPP1 has been shown to be required for the proper formation of thylakoid membranes. However, studies on VIPP1 itself, as well as on PspA, its bacterial homolog, suggests that this protein may be involved in a number of additional functions, including protein translocation. The role of VIPP1 in protein translocation in the chloroplast has not been investigated. To this end, we conducted in vitro thylakoid protein transport assays to look at the effect of VIPP1 on the cpTat pathway, which is one of three translocation pathways found in both the chloroplast and its bacterial progenitor. We found that VIPP1 does indeed enhance protein transport through the cpTat pathway by up to 100%. The VIPP1 effect on cpTat activity occurs without interacting with the substrates or components of the translocon, and does not alter the energy potentials driving this translocation pathway. Instead, VIPP1 greatly enhances the amount of substrate bound productively to the thylakoids. Moreover, the presence of increasing VIPP1 concentrations in the reactions resulted in greater interactions between thylakoid membranes. Taken together, these results demonstrate a stimulatory role for VIPP1 in cpTat transport by enhancement of substrate binding, probably to the membrane lipid regions of the thylakoid. We propose a model in which VIPP1 facilitates reorganization of the thylakoid structure to increase substrate access to productive binding regions of the membrane as an early step in the cpTat pathway.  相似文献   

14.
Changes in gene expression, by application of H2O2, O2°generating agents (methyl viologen, digitonin) and gamma irradiation to tomato suspension cultures, were investigated and compared to the well-described heat shock response. Two-dimensional gel protein mapping analyses gave the first indication that at least small heat shock proteins (smHSP) accumulated in response to application of H2O2 and gamma irradiation, but not to O2° generating agents. While some proteins seemed to be induced specifically by each treatment, only part of the heat shock response was observed. On the basis of Northern hybridization experiments performed with four heterologous cDNA, corresponding to classes I–IV of pea smHSP, it could be concluded that significant amounts of class I and II smHSP mRNA are induced by H2O2 and by irradiation. Taken together, these results demonstrate that in plants some HSP genes are inducible by oxidative stresses, as in micro-organisms and other eukaryotic cells. HSP22, the main stress protein that accumulates following H2O2 action or gamma irradiation, was also purified. Sequence homology of amino terminal and internal sequences, and immunoreactivity with Chenopodium rubrum mitochondrial smHSP antibody, indicated that the protein belongs to the recently discovered class of plant mitochondrial smHSP. Heat shock or a mild H2O2 pretreatment was also shown to lead to plant cell protection against oxidative injury. Therefore, the synthesis of these stress proteins can be considered as an adaptive mechanism in which mitochondrial protection could be essential.  相似文献   

15.
Desiccation has significant effects on photosynthetic processes in intertidal macro‐algae. We studied an intertidal macro‐alga, Ulva sp., which can tolerate desiccation, to investigate changes in photosynthetic performance and the components and structure of thylakoid membrane proteins in response to desiccation. Our results demonstrate that photosystem II (PSII) is more sensitive to desiccation than photosystem I (PSI) in Ulva sp. Comparative proteomics of the thylakoid membrane proteins at different levels of desiccation suggested that there were few changes in the content of proteins involved in photosynthesis during desiccation. Interestingly, we found that both the PSII subunit, PsbS (Photosystem II S subunit) (a four‐helix protein in the LHC superfamily), and light‐harvesting complex stress‐related (LHCSR) proteins, which are required for non‐photochemical quenching in land plants and algae, respectively, were present under both normal and desiccation conditions and both increased slightly during desiccation. In addition, the results of immunoblot analysis suggested that the phosphorylation of PSII and LHCII increases during desiccation. To investigate further, we separated out a supercomplex formed during desiccation by blue native‐polyacrylamide gel electrophoresis and identified the components by mass spectrometry analysis. Our results show that phosphorylation of the complex increases slightly with decreased water content. All the results suggest that during the course of desiccation, few changes occur in the content of thylakoid membrane proteins, but a rearrangement of the protein complex occurs in the intertidal macro‐alga Ulva sp.  相似文献   

16.

Light is essential for all photosynthetic organisms while an excess of it can lead to damage mainly the photosystems of the thylakoid membrane. In this study, we have grown Chlamydomonas reinhardtii cells in different intensities of high light to understand the photosynthetic process with reference to thylakoid membrane organization during its acclimation process. We observed, the cells acclimatized to long-term response to high light intensities of 500 and 1000 µmol m?2 s?1 with faster growth and more biomass production when compared to cells at 50 µmol m?2 s?1 light intensity. The ratio of Chl a/b was marginally decreased from the mid-log phase of growth at the high light intensity. Increased level of zeaxanthin and LHCSR3 expression was also found which is known to play a key role in non-photochemical quenching (NPQ) mechanism for photoprotection. Changes in photosynthetic parameters were observed such as increased levels of NPQ, marginal change in electron transport rate, and many other changes which demonstrate that cells were acclimatized to high light which is an adaptive mechanism. Surprisingly, PSII core protein contents have marginally reduced when compared to peripherally arranged LHCII in high light-grown cells. Further, we also observed alterations in stromal subunits of PSI and low levels of PsaG, probably due to disruption of PSI assembly and also its association with LHCI. During the process of acclimation, changes in thylakoid organization occurred in high light intensities with reduction of PSII supercomplex formation. This change may be attributed to alteration of protein–pigment complexes which are in agreement with circular dichoism spectra of high light-acclimatized cells, where decrease in the magnitude of psi-type bands indicates changes in ordered arrays of PSII–LHCII supercomplexes. These results specify that acclimation to high light stress through NPQ mechanism by expression of LHCSR3 and also observed changes in thylakoid protein profile/supercomplex formation lead to low photochemical yield and more biomass production in high light condition.

  相似文献   

17.
18.
Thylakoid biogenesis is a crucial step for plant development involving the combined action of many cellular actors. CPSAR1 is shown here to be required for the normal organization of mature thylakoid stacks, and ultimately for embryo development. CPSAR1 is a chloroplast protein that has a dual localization in the stroma and the inner envelope membrane, according to microscopy studies and subfractionation analysis. CPSAR1 is close to the Obg nucleotide binding protein subfamily and displays GTPase activity, as demonstrated by in vitro assays. Disruption of the CPSAR1 gene via T‐DNA insertion results in the arrest of embryo development. In addition, transmission electron microscopy analysis indicates that mutant embryos are unable to develop thylakoid membranes, and remain white. Unstacked membrane structures resembling single lamellae accumulate in the stroma, and do not assemble into mature thylakoid stacks. CPSAR1 RNA interference induces partially developed thylakoids leading to pale‐green embryos. Altogether, the presented data demonstrate that CPSAR1 is a protein essential for the formation of normal thylakoid membranes, and suggest a possible involvement in the initiation of vesicles from the inner envelope membrane for the transfer of lipids to the thylakoids.  相似文献   

19.
NaCl和Na2SO4胁迫下两种刺槐叶肉细胞叶绿体超微结构   总被引:3,自引:0,他引:3  
二倍体刺槐(diploid Robinia pseudoacacia)是我国水土保持林的先锋树种,具有较强的适应性和抗逆性,对改善生态环境、防治水土流失、调节水文状况有重要作用。四倍体刺槐(tetraploid Robinia pseudoacacia)是二倍体刺槐的加倍品种,也称多倍体刺槐,由韩国引进,具有速生、耐盐碱、耐干旱和耐烟尘等特点。目前,关于四倍体刺槐的研究,主要集中于栽培技术和繁殖技术方面,而关于四倍体刺槐叶片超微结构与其耐盐性的关系尚缺乏报道。比较了二倍体刺槐和四倍体刺槐在NaCl和Na2SO4胁迫下,叶片叶绿体超微结构的变化特点,一方面可以对二者的耐盐性进行鉴定,同时也可以探讨不同盐分胁迫条件下的作用机制。利用NaCl和Na2SO4进行20d的盐胁迫处理,观察叶绿体超微结构的变化特点,发现:NaCl处理前,二者叶肉细胞叶绿体为梭形、形态饱满、结构完整,NaCl处理后10d时,二倍体刺槐的叶绿体出现变形、膜模糊、基粒片层松散、类囊体解体、脂质球增多等现象,NaCl处理后20d时,叶绿体肿胀、变形,基粒片层断裂,膜系统解体。Na2SO4处理后10d时,二倍体刺槐的叶绿体肿胀,膜模糊,基粒片层松散、类囊体解体,Na2SO4盐胁迫处理后20d时,膜系统全部解体,结构破坏更为严重。总体来说,四倍体刺槐在盐胁迫后叶绿体结构变化不明显,只是在Na2SO4处理20d时,四倍体刺槐的叶绿体出现中空、基粒片层松散、膜边缘模糊现象。在处理前,两种刺槐的叶绿体均紧贴细胞壁,分布于细胞壁边缘。在NaCl处理后10d时,二倍体刺槐的叶绿体仍呈有序排列,紧贴细胞壁,但在处理后20d时,大部分叶绿体脱离细胞壁,呈随机分布。在Na2SO4处理后10d时,二倍体刺槐部分叶绿体脱离细胞壁,位于细胞中央。在Na2SO4处理后20d时,二倍体刺槐叶绿体大部分与细胞壁脱离。四倍体刺槐在两种盐胁迫处理前后叶绿体的排列变化不明显,均分布于细胞壁边缘,紧贴细胞壁。所以在盐胁迫下,耐盐植物叶片的叶绿体表现为结构完整,基粒片层清晰,类囊体结构完整,而不耐盐植物则表现为叶绿体超微结构松散、变形,基粒片层模糊,破坏严重时基粒片层扭曲,叶绿体解体,失去完整结构。  相似文献   

20.
Alexander V. Vener 《BBA》2007,1767(6):449-457
Recent advances in vectorial proteomics of protein domains exposed to the surface of photosynthetic thylakoid membranes of plants and the green alga Chlamydomonas reinhardtii allowed mapping of in vivo phosphorylation sites in integral and peripheral membrane proteins. In plants, significant changes of thylakoid protein phosphorylation are observed in response to stress, particularly in photosystem II under high light or high temperature stress. Thylakoid protein phosphorylation in the algae is much more responsive to the ambient redox and light conditions, as well as to CO2 availability. The light-dependent multiple and differential phosphorylation of CP29 linker protein in the green algae is suggested to control photosynthetic state transitions and uncoupling of light harvesting proteins from photosystem II under high light. The similar role for regulation of the dynamic distribution of light harvesting proteins in plants is proposed for the TSP9 protein, which together with other recently discovered peripheral proteins undergoes specific environment- and redox-dependent phosphorylation at the thylakoid surface. This review focuses on the environmentally modulated reversible phosphorylation of thylakoid proteins related to their membrane dynamics and affinity towards particular photosynthetic protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号