首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen sulfide alleviated chromium toxicity in wheat   总被引:7,自引:0,他引:7  
Effects of H2S on seed germination under chromium (Cr) stress were investigated in wheat (Triticum aestivum L.). Under Cr stress, the percentage of germination of wheat seeds decreased, but this decrease could be alleviated by pretreatment with NaHS, an H2S donor, in a dose-dependent manner. Furthermore, NaHS significantly enhanced the activities of amylase, esterase, superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase in Cr-stressed germinating seeds, whereas reduced the Cr-induced increase in lipoxygenase activity and over-production of malondialdehyde (MDA) and H2O2, and sustained slightly higher content of endogenous H2S.  相似文献   

2.

Oxidative stress due to hexavalent chromium [Cr(VI)] in Vigna radiata seedlings, and stress amelioration with treatment of methanol extract of Rhododendron arboreum leaves was observed in the present study by analyzing growth parameters, stomatal morphology, malondialdehyde (MDA) content, histological analysis, pigment contents, Cr metal uptake, elemental analysis, and antioxidant analysis. Chromium treatment resulted in the decline of root length, shoot length, fresh weight, and dry weight. Scanning electron microscopic studies revealed that Cr treatment altered the stomatal structure. As compared to control plants, MDA content increased by 80.1% in Cr-treated plants. Histological analysis with confocal microscope confirmed the nuclear damage, membrane damage, enhanced H2O2 accumulation, and decline in pigment concentration. Atomic absorption spectrometry analysis revealed an accumulation of 43.3% Chromium in the plant tissues and decreased concentration of essential elements as consequences of Cr treatment. The methanol extract of R. arboreum leaves (MEL) alleviated Cr stress in Vigna radiata seedlings by restoring normal growth, stomatal structure, and pigment contents, as well as essential elements. Reduction in H2O2 accumulation, reduced MDA content by 29.2%, and decline in Cr accumulation to 32.8% was observed after MEL supplementation to Cr-stressed plants. Decreased nuclear and membrane damage along with increased lipid-soluble as well as water-soluble antioxidants after MEL application in Cr-stressed plants are further symptoms of stress amelioration properties of Rhododendron leaves.

  相似文献   

3.
Low-light (LL) intensity is a primary abiotic stressor that negatively influences turf grass quality. In the present experiment, we studied the effect of exogenous Ca2+ (0, 10, 50, 100, and 200 mM) on the antioxidant system, the accumulation of MDA and proline, the content of photosynthetic pigments in plant leaves in order to investigate whether exogenous Ca2+ treatment improves LL tolerance in tall fescue (Festuca arundinacea Schreb.). We have found that LL significantly reduced a number of growth parameters (plant height, leaf width, leaf fresh weight, root fresh weight, leaf dry weight, and root dry weight), chlorophyll (Chl) a and Chl b contents, and carotenoid (Car) levels, while considerably enhancing electrolyte leakage (EL), MDA accumulation, calcium (Ca2+) concentration, and generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and superoxide radical (O 2 ·? ). Moreover, LL significantly induced the activities of antioxidant enzymes, such as peroxidase (POD) and catalase (CAT), and slightly increased the activity of superoxide dismutase (SOD) in tall fescue leaves. In contrast, POD and SOD activities declined considerably while CAT activity significantly increased in plant roots under LL stress. The application of 50 mM Ca2+ significantly improved the aforementioned growth parameters, the content of photosynthetic pigments, and further enhanced the activities of POD, SOD, and CAT, but decreased electrolyte leakage and MDA and H2O2 levels in the leaves and roots of tall fescue under LL stress. These results suggest that Ca2+ is likely involved in a resistance to LL by regulating antioxidant enzyme action in tall fescue leaves and roots.  相似文献   

4.
Accumulation of excess copper (Cu) in agricultural soils can decrease growth and quality of crops grown on these soils and a little information is available on the role of silicon (Si) in reducing Cu toxicity in plants. A hydroponic study was conducted to investigate the effects of Si (1.0 mM) on growth and physiology of cotton seedlings grown on different Cu (0, 25, and 50 µM) concentrations. Elevated levels of Cu decreased growth, biomass, photosynthetic pigments, and gas exchange characteristics, and increased the electrolyte leakage (EL), hydrogen peroxide (H2O2), and thiobarbituric acid reactive substances (TBARS) contents in leaf, stem, and roots of cotton seedlings. Cu stress alone decreased the activities of key antioxidant enzymes in cotton seedlings. Exogenous application of Si alleviated the toxic effects of Cu on cotton seedlings by improving growth, photosynthetic pigments, and gas exchange characteristics under Cu stress. The Si application decreased Cu concentrations in leaves, stem, and roots as compared with the control plants. Furthermore, Si decreased oxidative stress as evidenced by decreased EL, H2O2, and TBARS contents, and increased the antioxidant enzyme activities in cotton seedlings. This study provides evidences of Si-mediated reduction of Cu toxicity in cotton seedlings at physiological and biochemical levels.  相似文献   

5.
AbstractUntreated wastewater contains toxic amounts of heavy metals such as chromium (Cr), which poses a serious threat to the growth and physiology of plants when used in irrigation. Though, Cr is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. To explore the interactive effects of micronutrients with amino acid chelators [iron-lysine (Fe-lys) and zinc-lysine (Zn-lys)], pot experiments were conducted in a controlled environment, using spinach (Spinacia oleracea L.) plant irrigated with tannery wastewater. S. oleracea was treated without Fe and Zn-lys (0 mg/L Zn-lys and 0 mg/L Fe-lys) and also treated with various combinations of (interactive application) Fe and Zn-lys (10 mg/L Zn-lys and 5 mg/L Fe-lys), when cultivated at different levels [0 (control) 33, 66 and 100%) of tannery wastewater in the soil having a toxic level of Cr in it. According to the results, we have found that, high concentration of Cr in the soil significantly (P < 0.05) reduced plant height, fresh biomass of roots and leaves, dry biomass of roots and leaves, root length, number of leaves, leaf area, total chlorophyll contents, carotenoid contents, transpiration rate (E), stomatal conductance (gs), net photosynthesis (PN), and water use efficiency (WUE) and the contents of Zn and Fe in the plant organs without foliar application of Zn and Fe-lys. Moreover, phytotoxicity of Cr increased malondialdehyde (MDA) contents in the plant organs (roots and leaves), which induced oxidative damage in S. oleracea manifested by the contents of hydrogen peroxide (H2O2) and membrane leakage. The negative effects of Cr toxicity could be overturned by Zn and Fe-lys application, which significantly (P < 0.05) increase plant growth, biomass, chlorophyll content, and gaseous exchange attributes by reducing oxidative stress (H2O2, MDA, EL) and increasing the activities of various antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) catalase (CAT) and ascorbate peroxidase (APX). Furthermore, the supplementation of Zn and Fe-lys increased the contents of essential nutrients (Fe and Zn) and decreased the content of Cr in all plant parts compared to the plants cultivated in tannery wastewater without application of Fe-lys. Taken together, foliar supplementation of Zn and Fe-lys alleviates Cr toxicity in S. oleracea by increased morpho-physiological attributes of the plants, decreased Cr contents and increased micronutrients uptake by the soil, and can be an effective in heavy metal toxicity remedial approach for other crops.Graphic abstract  相似文献   

6.
The effects of NiSO4, calcium, and L-histidine (His) on the components of ascorbate-glutathione cycle, antioxidant enzymes and lipid peroxidation in a tomato cultivar Early Urbana Y was investigated. The activities of enzymes including catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR), lipoxygenase (LOX), and phenylalanine ammonia lyase (PAL) were measured. In addition, the content of H2O2, ascorbate (ASC), dehydroascorbate (DHA), reduced glutathione (GSH), chlorophyll (Chl) a+b, carotenoids, proteins, malondialdehyde (MDA), membrane aldehydes, and electrolyte leakage (EL) were determined. Results suggest that the excess of Ni increased the content of H2O2, MDA, membrane aldehydes and proteins in roots as well as GPX, LOX, APX activities, and EL in leaves, whereas Ca and His ameliorated these effects. Moreover, decreasing leaf GSH and DHA content and GR activity were observed under the Ni stress, but these parameters were raised by Ca plus His treatment. However, no improvement in leaf protein, ASC, root GSH content, and activities of PAL and CAT were observed by using Ca or His under Ni stress.  相似文献   

7.
Due to its wide industrial application, chromium (Cr) is known to be a critical environmental pollutant. Contamination of water and agricultural soil by Cr inhibits crop productivity and their physiological and biochemical processes. The objective of the current work was to investigate the effects of appropriate reducing agents such as EDTA, iron sulfate (Fe2+), and zerovalent nano iron (Fe0 nanoparticles) on growth and physiology of sunflower plants under Cr(VI) stress. Results showed that the Cr uptake increased by increasing the amount of EDTA, leading to a significant reduction in morphological and physiological parameters except for MDA and H2O2 contents. Treatment with Fe0 nanoparticles and Fe2+ reduced Cr concentration in root and shoot, increased root and shoot dry weight, plastid pigments (chlorophyll and carotenoids) and proline contents; however, the level of MDA and H2O2 decreased significantly. All parameters were affected by Fe2+ during the first week of sampling; however, Fe0 nanoparticles affected all traits until the end of the third sampling stage. A statistically significant and positive correlation was found between root Cr concentration and MDA and H2O2 seedlings treated with EDTA, Fe2+, and Fe0 grown under Cr stress. From the result of this study, it can be concluded that sunflower has the potential for accumulation of Cr as a heavy metal, and treatment with Fe0 nanoparticles to prevent Cr uptake is more effective than other employed treatments.  相似文献   

8.
采用营养液水培方法,通过外源施加H2S供体NaHS(100μmol/L),研究了信号分子H2S对100mmol/L NO3-胁迫下番茄幼苗生理生化特性的影响。结果表明:(1)NO3-胁迫下,随着处理时间的延长,番茄幼苗的株高、根长、鲜重和干重显著降低,叶绿素(a、b)含量、净光合速率、气孔导度、蒸腾速率均显著降低,而胞间CO2浓度以及丙二醛(MDA)、H2O2含量增加,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性显著降低,抗坏血酸(AsA)和还原性谷胱甘肽(GSH)含量显著降低。(2)与NO3-胁迫处理相比,外源NaHS处理1、3、5d后,番茄幼苗的株高、根长、鲜重和干重显著增加,叶绿素(a、b)含量、净光合速率、气孔导度、蒸腾速率均显著升高,而胞间CO2浓度显著降低;MDA和H2O2含量降低,SOD、POD、CAT和APX活性显著增强,AsA和GSH含量显著增加,而且幼苗的硝酸还原酶、谷氨酰胺合成酶、谷氨酸合酶的活性显著增强;L-半胱氨酸脱巯基酶活性和内源H2S含量增加。研究认为,外源H2S可能通过提高抗氧化物酶的活性和增加抗氧化物质含量来缓解NO3-对番茄幼苗造成的伤害,从而增强其对NO3-胁迫耐性。  相似文献   

9.
Heavy metal contaminated agricultural soils are one of the most important constraints for successful cultivation of crops. The current research was conducted to evaluate the role of potassium (K) on plant growth and amelioration of cadmium (Cd) stress in Gladiolus grandiflora under greenhouse conditions. G. grandiflora corms were sown in media contaminated with 0 (C), 50 (Cd50) and 100 (Cd100) mg Cd kg?1 soil. The plants growing in Cd-contaminated media exhibited reduced gas exchange attributes, chlorophyll (Chl) contents, vegetative and reproductive growth as compared to control. The plants raised in Cd contaminated media showed reduced nutrition yet higher Cd contents. However, supplementation of 60 mg Kg?1 K in treated plants (C+K, Cd50+K and Cd100+K) improved quantity of total soluble protein and proline (Pro) along with activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) under Cd stress. Similarly, K supplementation reduced the level of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in treated plants. Potassium supplemented plants exhibited better vegetative and reproductive growth. The improved stress tolerance in K supplemented plants was attributed to the reduced quantity of MDA and H2O2, enhanced synthesis of protein, proline, phenols, flavonides and improved activity of antioxidant enzymes. The present research supports the application of K for alleviation of Cd stress in G. grandiflora.  相似文献   

10.
高浓度二氧化碳和臭氧对蒙古栎叶片活性氧代谢的影响   总被引:3,自引:0,他引:3  
利用开顶箱熏蒸法,研究了高浓度O3(≈80 nmol·mol-1)和高浓度CO2(≈700 μmol·mol-1)及其复合处理对蒙古栎叶片活性氧代谢的影响.结果表明:高浓度O3显著增加了蒙古栎叶片超氧阴离子(O2)产生速率、过氧化氢(H2O2)和丙二醛(MDA)含量和电解质外渗率(P<0.05),显著降低了超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性和抗坏血酸(AsA)含量(P<0.05).高浓度CO2对蒙古栎叶片活性氧代谢影响不显著.高浓度O3和CO2复合处理的叶片O2产生速率、H2O2和MDA含量和电解质外渗率上升不明显,说明高浓度CO2缓解了高浓度O3对蒙古栎叶片的氧化胁迫.复合处理的叶片SOD、CAT、APX活性以及AsA和总酚含量显著高于O3处理的叶片(P<0.05),说明高浓度CO2缓解了高浓度O3对叶片抗氧化系统的消极影响.  相似文献   

11.
The effect of proline on the antioxidant system in the leaves of eight species of wild almond (Prunus spp.) exposed to H2O2-mediated oxidative stress was studied. The levels of endogenous proline (Pro) and hydrogen peroxide, and the activities of total superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (POD) were measured. The degradation of chlorophyll but not carotenoids occurred in leaves in the solution of 5 mM H2O2. An increase in membrane lipid peroxidation was observed in H2O2 treatment, as assessed by MDA level and percentage of membrane electrolyte leakage (EL). Significant increases in total SOD and CAT activities, as well as decreases in APX and POD activities, were detected in H2O2-treated leaves. The three SOD isoforms showed different behavior, as Mn-SOD activity was enhanced by H2O2, whereas Fe-SOD and Cu/Zn-SOD activities were inhibited. In addition, Pro accumulation up to 0.1 ??mol/g fr wt, accompanied by significant decreases in ascorbate and glutathione levels, was observed in H2O2-treated leaves. After two different treatments with 10 mM Pro + 5 mM H2O2, total SOD and CAT activities were similar to the levels in control plants, while POD and APX activities were higher if compared to the leaves exposed only to H2O2. Pro + H2O2 treatments also caused a strong reduction in the cellular H2O2 and MDA contents and EL. The results showed that Pro could have a key role in protecting against oxidative stress injury of wild almond species by decreasing membrane oxidative damage.  相似文献   

12.
A hydroponic experiment was carried out to study the role of hydrogen peroxide (H2O2) in enhancing tolerance and reducing translocation of cadmium (Cd) in rice seedlings. Plant growth (length and biomass of shoot and root) was significantly repressed by Cd exposure. However, pretreatment with 100 μM H2O2 for 1d mitigated Cd stress by inducing enzyme activities for antioxidation (e.g., superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX)) and detoxification (e.g., glutathione S-transferase (GST)) as well as by elevating contents of reduced glutathione (GSH) and ascorbic acid (AsA). As a result, H2O2 and malondialdehyde (MDA) content decreased in plants and the seedling growth was less inhibited. On the other hand, H2O2 pretreatment decreased Cd concentration in shoots, thus lowered the ratio of Cd concentration in shoots and roots (S/R), indicating that H2O2 may affect Cd distribution in rice seedlings. The improved Cd tolerance is partly due to an enhanced antioxidative system that efficiently prevents the accumulation of H2O2 during Cd stress. Increased Cd sequestration in rice roots may contribute to the decline of Cd translocation.  相似文献   

13.
Heavy metal pollution is one of the major constraints in oilseed rape (Brassica napus L.) production. In this study, protective role of hydrogen sulfide (H2S) on plant growth under lead (Pb) stress was studied in B. napus. Plants were grown hydroponically in greenhouse conditions under three levels (0, 100, and 400 μM) of Pb and three levels (0, 100 and 200 μM) of H2S donor sodium hydrosulfide. Outcomes demonstrated that Pb stress significantly reduced the plant biomass, leaf chlorophyll contents, nutrients uptake in the leaves and roots of B. napus plants. Exogenous application of H2S significantly improved the plant biomass, chlorophyll contents and concentration of macro- and micronutrients in the leaves and roots of B. napus plants under Pb-toxicity conditions. The data indicated that application of Pb alone significantly increased the reactive oxygen species (ROS) as well as malondialdehyde (MDA) in the leaves and roots of plants. Meanwhile, application of H2S decreased the production of MDA and ROS in the leaves and roots by increasing antioxidant activities under Pb stress. Moreover, this study also revealed that plants treated with H2S at different concentrations enhanced the contents of total glutathione and glutathione reduced/glutathione oxidized ratio in leaves and roots under different levels of Pb. The results depicted that H2S improved the plant biomass, uptake of nutrients in the leaves and roots of B. napus plants and enhanced the performance of antioxidant defense system due to its ameliorative potential under Pb stress conditions.  相似文献   

14.
任艳芳  何俊瑜  杨军  韦愿娟 《生态学报》2019,39(20):7745-7756
以小白菜"甜脆青"为试材,研究不同浓度(5、10、25、50和100 mmol/L)过氧化氢(H2O2)浸种处理对100 mmol/L NaCl胁迫下小白菜(Brassica chinensis L.)种子萌发、幼苗生长及生理特性的影响。结果表明:100 mmol/L NaCl胁迫明显抑制小白菜种子的萌发状况和幼苗生长,发芽势、发芽指数、活力指数及幼苗根和芽长度和鲜重均明显降低,根和芽中CAT的活性及K+含量明显受到抑制,渗透调节物质、活性氧和MDA含量显著增加。不同浓度H2O2浸种处理提高了NaCl胁迫下小白菜种子发芽势、发芽指数和活力指数,促进小白菜根和芽的生长,增强了NaCl胁迫下根和芽中SOD、CAT和APX的活性及K+含量,降低O2产生速率及H2O2和MDA含量,进一步促进脯氨酸和可溶性糖含量的增加,降低体内Na+含量。其中以10 mmol/L H2O2处理缓解盐胁迫效果最好,明显缓解NaCl胁迫对小白菜种子萌发和幼苗生长的抑制。  相似文献   

15.
The effect of supplementary UV-B radiation on Korean pine (Pinus koraiensis Sieb. et Zucc) was investigated. Compared with the control, the T1, T2, and T3 UV-B treatments increased by 1.40, 2.81, and 4.22 kJ m?2 d?1, respectively. Gas-exchange parameters, photosynthetic pigment concentrations, contents of secondary metabolites, epicuticular wax, free radical, malondialdehyde (MDA), and the activities of antioxidant enzymes were determined after 40 d of exposure. The concentrations of chlorophyll (Chl) a, Chl b, total Chl, carotenoid (Car), and the ratio Chl a/b in the pine needles were in the following order: T1 > T2 > T3. Compared with the control, the contents of flavonoids and epicuticular wax significantly decreased in all levels of supplementary UV-B radiations (p<0.05). Moreover, the contents of hydrogen peroxide (H2O2) and MDA significantly increased with the enhanced UV-B radiations (p<0.05). Korean pine can increase the catalase, ascorbate peroxidase, and superoxide dismutase activities to prevent oxidative stress by supplementary UV-B radiation. However, its defence mechanism is not efficient enough to prevent UV-Binduced damage.  相似文献   

16.
The present investigation was carried out to characterize genotypic variability in chickpea for water deficit tolerance by exploring the antioxidative defense system and seedling growth. Twenty nine chickpea genotypes including cultivars and advanced lines were grown under control and water deficit conditions induced by adding 3 % mannitol. The genotypes showed differential response in seedling growth under water deficit conditions. The activities of catalase (CAT) and superoxide dismutase (SOD) were observed to be differentially expressed in the roots of various genotypes, under control and water deficit conditions. The contents of H2O2, malondialdehyde (MDA) and proline were also observed to be variable in the roots of all the genotypes, under control and water deficit conditions. Stress tolerance index for the various parameters, viz, CAT and SOD activity, H2O2, MDA and proline content, root length, shoot length and their biomass was determined and the level of stress resistance calculated. The genotypes which showed increased activities of CAT and SOD, decreased contents of H2O2 and MDA together with least affected seedling growth under water deficit conditions exhibited higher stress resistance capacity. Multivariate principal component analysis for all the parameters affected under water deficit conditions, grouped the genotypes into three clusters having different (high, moderate and low) levels of stress resistance. Complete linkage clustering grouped these genotypes into two major clusters-I and II. The genotypes present in sub–sub cluster ‘A1’ and sub cluster ‘B’ of major cluster-I have been observed to possess high stress resistance levels for respective parameters. It can thus be concluded that chickpea genotypes exhibiting increased stress resistance levels in relation to SOD and CAT activities, H2O2 and MDA contents and seedling growth would have higher stress tolerance under water deficit conditions.  相似文献   

17.
The effects of single or combined stress of aluminum (Al) and chromium (Cr) on plant growth, root dehydrogenase, oxidative stress and antioxidative enzymes were studied using two barley genotypes differing in Al tolerance in a hydroponic experiment. Al or Cr stress decreased plant growth, lowered root dehydrogenase activity and caused oxidative damage, as characterized by increased MDA and H2O2 contents. Under Al or Cr stress, the activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT), were dramatically increased in plant tissues. Gebeina, an Al-tolerant genotype, had less oxidative damage than Shang 70-119, an Al-sensitive genotype. The extent of oxidative damage induced by Cr varied with the pH of the culture solution, with lower pH values (4.0) being more severe than higher pH values (6.5). The combination of Cr and Al caused a further decrease in plant growth, a decrease in root dehydrogenase activity and an increase in MDA and H2O2 contents as well as the activities of antioxidative enzymes. There was also a marked difference between the two barley genotypes in the extent of increased antioxidative enzyme activity under the Cr and Al stresses.  相似文献   

18.
19.
In the view of physiological role of H2O2, we investigated whether exogenous H2O2 application would affect short-term cold response of tomato and induce acclimation. Pretreatments were performed by immersing roots into 1 mM H2O2 solution for 1 h when transferring seedlings from seedling substrate to soil (acclimated group). Cold stress (3 °C for 16 h) caused significant reduction in relative water content (RWC) of control and non-acclimated (distilled water treated) groups when compared with unstressed plants. H2O2 promoted maintenance of relatively higher RWC under stress. Anthocyanin level in leaves of acclimated plants under cold stress was significantly higher than that of unstressed control and non-acclimated plants. Malondialdehyde (MDA) levels demonstrated low temperature induced oxidative damage to control and non-acclimated plants. MDA remained around unstressed conditions in acclimated plants, which demonstrate that H2O2 acclimation protected tissues against cold induced lipid peroxidation. H2O2 acclimation caused proline accumulation in roots under cold stress. Ascorbate peroxidase (APX) activity in roots of cold stressed and unstressed H2O2 acclimated plants increased when compared with control and non-acclimated plants, with highest increase in roots of acclimated plants under cold stress. CAT levels in roots of acclimated plants also increased, whereas levels remained unchanged in unstressed plants. Endogenous H2O2 levels significantly increased in roots of control and non-acclimated plants under cold stress. On the other hand, H2O2 content in roots of acclimated plants was significantly lower than control and non-acclimated plants under cold stress. The results presented here demonstrated that H2O2 significantly enhanced oxidative stress response by elevating the antioxidant status of tomato.  相似文献   

20.
Three groundnut germplasm lines, ICGV86699 (resistant), NCAC 343 (resistant) and TMV 2 (susceptible), were examined for Spodoptera litura (Fab.) resistance. Biochemical parameters such as oxidative enzyme activities, peroxidase (POD) and polyphenol oxidase (PPO), other defensive components such as total phenols, hydrogen peroxide (H2O2), malondialdehyde (MDA) and protein contents were evaluated in these germplasm lines after 24, 48, 72 and 96 h following S. litura infestation to characterize the mechanism of resistance. Enzyme activities and total phenols, H2O2, MDA and protein contents were increased following infestation; however, significance varied at different time intervals and among germplasm lines depending upon the induced level of resistance. The three germplasm lines differed in resistance mechanisms to S. litura and the resistance may be partly due to higher enzyme activities, and other components studied. Among the three germplasms tested, ICGV86699 showed greater elevation in POD and PPO activities and in phenolic and H2O2 contents at different time intervals as compared to NCAC 343 and TMV 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号