首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the cytotoxicity and antimicrobial activity of analogs of cationic peptides against microorganisms associated with endodontic infections. L-929 fibroblasts were exposed to LL-37, KR-12-a5 and hBD-3–1CV and chlorhexidine (CHX, control), and cell metabolism was evaluated with MTT. The minimal inhibitory concentration (MIC) and the minimal bactericidal/fungicidal concentration (MBC/MFC) of the peptides and CHX were determined against oral pathogens associated with endodontic infections. Enterococcus faecalis and Streptococcus mutans biofilms were cultivated in bovine dentin blocks, exposed to different concentrations of the most efficient antimicrobial peptide and analyzed by confocal laser scanning microscopy. CHX and peptides affected the metabolism of L-929 at concentrations > 31.25 and 500 μg ml?1, respectively. Among the peptides, KR-12-a5 inhibited growth of both the microorganisms tested with the lowest MIC/MBC/MFC values. In addition, KR-12-a5 significantly reduced E. faecalis and S. mutans biofilms inside dentin tubules. In conclusion, KR-12-a5 is a non-cytotoxic agent with potent antimicrobial and anti-biofilm activity against oral pathogens associated with endodontic infections.  相似文献   

2.
The aim of the present study was to evaluate the effectiveness of chlorhexidine digluconate (CHX) and commonly used mouthrinses to single- and poly-species biofilms by S. mutans, S. aureus and P. aeruginosa, on titanium discs of grade IV. The formation of single- and poly-species biofilms at 16.5, 40.5 and 64.5-h incubation on titanium surface was evaluated by plate count (CFU ml−1) before and after exposure to CHX and four mouthrinses (Curasept, Listerine, Meridol and Buccagel) and expressed as percentage of Inhibitory Activity (IA%). The application of the different anti-plaque formulations on biofilm can reduce the adhesion of bacteria to titanium surface with different degrees. The higher efficacy was observed for Listerine that shows IA% = 100 on the biofilm formed by S. mutans at 16.5 h. Log count of CFU was dependent to culture time and four mouthrinses for S. mutans and S. aureus, whilst was not dependent to culture time but to mouthrinses for P. aeruginosa. In general, the efficacy was particularly lesser to poly-species biofilms; no statistical differences were evidenced between all the mouthrinses and CHX as control group. The tested mouthrinses, compared to reference CHX 0.2%, have demonstrated a significant lower antibacterial activity than Listerine towards the experimental biofilms. This “in vitro” biofilm model should prove extremely useful for pre-clinical testing of anti-plaque agents, which inhibit biofilm formation, can prevent subsequent implant failure.  相似文献   

3.
Most catheter-associated urinary tract infections are polymicrobial. Here, uropathogen interactions in dual-species biofilms were studied. The dual-species associations selected based on their prevalence in clinical settings were Klebsiella pneumoniaeEscherichia coli, E. coliEnterococcus faecalis, K. pneumoniaeE. faecalis, and K. pneumoniaeProteus mirabilis. All species developed single-species biofilms in artificial urine. The ability of K. pneumoniae to form biofilms was not affected by E. coli or E. faecalis co-inoculation, but was impaired by P. mirabilis. Conversely, P. mirabilis established a biofilm when co-inoculated with K. pneumoniae. Additionally, E. coli persistence in biofilms was hampered by K. pneumoniae but not by E. faecalis. Interestingly, E. coli, but not K. pneumoniae, partially inhibited E. faecalis attachment to the surface and retarded biofilm development. The findings reveal bacterial interactions between uropathogens in dual-species biofilms ranged from affecting initial adhesion to outcompeting one bacterial species, depending on the identity of the partners involved.  相似文献   

4.
Enterococcus faecalis is a ubiquitous bacterium of the gut that is observed in persistent periradicular infections. Its pathogenicity is associated with biofilm formation and the ability to survive under nutrient-poor (starvation) conditions. However, characteristics of chemical composition of biofilm cells developed by starved E. faecalis cells remain poorly understood. In this study, E. faecalis cells in exponential, stationary, and starvation phases were prepared and separately cultured to form biofilms. Confocal laser scanning microscopy was performed to verify biofilm formation. Raman microscopy was used to investigate the chemical composition of cells within the biofilms. Compared to cells in exponential or stationary phase, starved cells developed biofilms with fewer culturable cells (P?E. faecalis.  相似文献   

5.
Abstract

Catheter-related urinary tract infections are one of the most common biofilm-associated diseases. Within biofilms, bacteria cooperate, compete, or have neutral interactions. This study aimed to investigate the interactions in polymicrobial biofilms of Klebsiella pneumoniae and Enterococcus faecalis, two of the most common uropathogens. Although K. pneumoniae was the most adherent strain, it could not maintain dominance in the polymicrobial biofilm due to the lactic acid produced by E. faecalis in a glucose-enriched medium. This result was supported by the use of E. faecalis V583 ldh-1/ldh-2 double mutant (non-producer of lactic acid), which did not inhibit the growth of K. pneumoniae. Lyophilized cell-free supernatants obtained from E. faecalis biofilms also showed antimicrobial/anti-biofilm activity against K. pneumoniae. Conversely, there were no significant differences in planktonic polymicrobial cultures. In summary, E. faecalis modifies the pH by lactic acid production in polymicrobial biofilms, which impairs the growth of K. pneumoniae.  相似文献   

6.
Abstract

This study aimed to compare the formation of polymicrobial biofilms using carious dentin or saliva as inoculum for application in in vitro microbiological studies on caries research. For biofilm growth, combined samples of infected dentin or saliva from three donors were used. The biofilms were grown on glass coverslips, under a regimen of intermittent exposure (6?h day?1) to 1% sucrose for 4?days. Total bacterial loads, as well as specific aciduric bacteria and mutans streptococci loads were quantified and correlated with biofilm acidogenicity and susceptibility to chlorhexidine. The data were evaluated using the Student’s-t, Mann Whitney and Kruskal-Wallis tests. The two biofilms showed similar microbial loads (total bacteria, aciduric bacteria and mutans streptococci) on day 4, and high acidogenicity after 48?h and were susceptible to chlorhexidine at different time intervals. In conclusion, both dentin and saliva can be used as an inoculum in in vitro studies of processes related to biofilm formation.  相似文献   

7.
Aims: To compare the susceptibility of a 3‐day‐old biofilm and planktonic Salmonella to disinfectants at different exposure times. We hypothesize that Salmonella biofilms are more resilient to disinfectants compared to planktonic Salmonella. Methods and Results: The susceptibility of planktonic cells to disinfectants was tested by a modified version of the Council of Europe suspension test EN 1276. Salmonella biofilms were formed using the Calgary Biofilm Device. Results show that 3‐day‐old Salmonella biofilms are less susceptible to the disinfectants benzalkonium chloride, chlorhexidine gluconate, citric acid, quaternary ammonium compounds, sodium hypochlorite (SH) and ethanol, compared to planktonic Salmonella. Surprisingly, the results also demonstrate that low concentrations of SH were more effective against a 3‐day‐old biofilm compared to high concentrations of SH. Conclusions: While all the disinfectants evaluated were able to reduce biofilm‐associated cells at concentrations and contact times sufficient to eliminate planktonic cells, there were still sufficient viable cells remaining in the biofilm to cause further contamination and potential infection. Significance and Impact of the Study: Protocols for the use of chemical disinfectants need to include biofilm susceptibility testing. There is a requirement for an effective and standardized tool for determining the susceptibility of biofilms to disinfectants.  相似文献   

8.
Growing evidence from clinical studies suggests that mothers using xylitol gums or lozenges have decreased levels of Streptococcus mutans (SM) and do not transmit these cariogenic bacteria as readily to their children. To begin to determine mechanisms for these clinical findings and to explore potential synergism of antimicrobial combinations, we studied the effect of multiple exposures of chlorhexidine (CHX) combined with copper gluconate (CG) or zinc gluconate (ZG) followed by xylitol (XYL) on the ability of SM to adhere and form biofilms. Cell suspensions of SM were exposed two times to CHX; CG; CHX plus CG; ZG; and CHX plus ZG, and then four times to XYL. Control cells were exposed six times to water or XYL or received no treatment. For biofilm assessment, glass slides were inoculated with treated cells, and numbers of bacteria were enumerated after 48 hours of incubation. To assess the ability of SM to adhere, microtiter plate wells coated with primary S. sanguinis biofilms grown in sucrose were inoculated with treated SM, and adhesion was determined. Cells exposed to CHX–XYL combinations exhibited significant but transient inhibition of growth. The multiple-exposure regimen groups showed significant decreases in the ability of SM to form biofilms (P < 0.05). However, the CHX–XYL group exhibited a much greater effect than the other treatment groups (P < 0.001). Adhesion studies revealed that none of the multiple-exposure regimens had a significant effect on adhesion of SM to primary biofilms of S. sanguinis. We concluded that significant inhibition of SM growth and subsequent inability to grow as biofilms in the presence of sucrose occurs after a staggered exposure regimen to CHX initially and then to XYL. This may help explain the clinical data showing the decreased levels of SM in mothers treated with CHX and XYL.  相似文献   

9.
Enterococci have emerged as one of the leading causes of nosocomial bloodstream, surgical site, and urinary tract infections. More recently, enterococci have been associated with biofilms, which are bacterial communities attached to a surface and encased in an extracellular polymeric matrix. The enterococcal cell surface-associated protein, Esp, enhances biofilm formation by Enterococcus faecalis in a glucose-dependent manner. Mature Esp consists of a nonrepeat N-terminal domain and a central region made up of two types of tandem repeats followed by a C-terminal membrane-spanning and anchor domain. This study was undertaken to localize the specific domain(s) of Esp that plays a role in Esp-mediated biofilm enhancement. To achieve this objective, we constructed in-frame deletion mutants expressing truncated forms of Esp in an isogenic background. By comparing strains expressing the mutant forms of Esp to those expressing wild-type Esp, we found that the strain expressing Esp lacking the N-terminal domain formed biofilms that were quantitatively less in biovolume than the strain expressing wild-type Esp. Furthermore, an E. faecalis strain expressing only the N-terminal domain of Esp fused to a heterologous protein anchor formed biofilms that were quantitatively similar to those formed by a strain expressing full-length Esp. This suggested that the minimal region contributing to Esp-mediated biofilm enhancement in E. faecalis was confined to the nonrepeat N-terminal domain. Expression of full-length E. faecalis Esp in heterologous host systems of esp-deficient Lactococcus lactis and Enterococcus faecium did not enhance biofilm formation as was observed for E. faecalis. These results suggest that Esp may require interaction with an additional E. faecalis-specific factor(s) to result in biofilm enhancement.  相似文献   

10.
The ability of Aeribacillus pallidus E334 to produce pellicle and form a biofilm was studied. Optimal biofilm formation occurred at 60 °C, pH 7.5 and 1.5% NaCl. Extra polymeric substances (EPS) were composed of proteins and eDNA (21.4 kb). E334 formed biofilm on many surfaces, but mostly preferred polypropylene and glass. Using CLSM analysis, the network-like structure of the EPS was observed. The A. pallidus biofilm had a novel eDNA content. DNaseI susceptibility (86.8% removal) of eDNA revealed its importance in mature biofilms, but the purified eDNA was resistant to DNaseI, probably due to its extended folding outside the matrix. Among 15 cleaning agents, biofilms could be removed with alkaline protease and sodium dodecyl sulphate (SDS). The removal of cells from polypropylene and biomass on glass was achieved with combined SDS/alkaline protease treatment. Strong A. pallidus biofilms could cause risks for industrial processes and abiotic surfaces must be taken into consideration in terms of sanitation procedures.  相似文献   

11.
Lactoferrin chimera (LFchimera), a heterodimeric peptide containing lactoferrampin (LFampin265–284) and a part of lactoferricin (LFcin17–30), possesses a broad spectrum of antimicrobial activity. However, there is no report on the inhibitory effects of LFchimera against multispecies oral biofilms. This study aimed to determine the effects of LFchimera in comparison to chlorhexidine digluconate (CHX) and minocycline hydrochloride (MH), on in vitro multispecies biofilms derived from subgingival plaque of periodontitis patients harboring Aggregatibacter actinomycetemcomitans. First the effects of LFchimera against planktonic and an 1-day old biofilm of the periodontopathic bacteria, A. actinomycetemcomitans ATCC 43718 were established. Then, the effects on biofilm formation and bacterial viability in the multispecies biofilm were determined by crystal violet staining and LIVE/DEAD BacLight Bacterial Viability kit, respectively. The results revealed that a significant reduction (P?<?0.05) in biofilm formation occurred after 15 min exposure to 20 µM of LFchimera or CHX compared to control. In contrast, MH at concentration up to 100 µM did not inhibit biofilm formation. The ratio of live/dead bacteria in biofilm was also significantly lower after 15 min exposure to 20 µM of LFchimera compared to control and 20–50 µM of CHX and MH. Altogether, the results obtained indicate that LFchimera is able to inhibit in vitro subgingival biofilm formation and reduce viability of multispecies bacteria in biofilm better than CHX and MH.  相似文献   

12.
Polyamines such as spermidine and spermine are primordial polycations that are ubiquitously present in the three domains of life. We have found that Gram‐positive bacteria Staphylococcus aureus and Enterococcus faecalis have lost either all or most polyamine biosynthetic genes, respectively, and are devoid of any polyamine when grown in polyamine‐free media. In contrast to bacteria such as Pseudomonas aeruginosa, Campylobacter jejuni and Agrobacterium tumefaciens, which absolutely require polyamines for growth, S. aureus and E. faecalis grow normally over multiple subcultures in the absence of polyamines. Furthermore, S. aureus and E. faecalis form biofilms normally without polyamines, and exogenous polyamines do not stimulate growth or biofilm formation. High levels of external polyamines, including norspermidine, eventually inhibit biofilm formation through inhibition of planktonic growth. We show that spermidine/spermine N‐acetyltransferase (SSAT) homologues encoded by S. aureus USA300 and E. faecalis acetylate spermidine, spermine and norspermidine, that spermine is the more preferred substrate, and that E. faecalis SSAT is almost as efficient as human SSAT with spermine as substrate. The polyamine auxotrophy, polyamine‐independent growth and biofilm formation, and presence of functional polyamine N‐acetyltransferases in S. aureus and E. faecalis represent a new paradigm for bacterial polyamine biology.  相似文献   

13.
Abstract

The complexity of the root canal system results in areas where mechanical instrumentation is impossible during endodontic treatment. To disinfect these areas, the effect of irrigation on biofilm debridement is of great significance but has not yet been well explored. Using an in vitro Enterococcus faecalis biofilm model and a biofilm reactor, the present study provides a better understanding of the relative contributions of mechanical and chemical effects of irrigation on biofilm removal, as well as the factors influencing their coupling efficiency. The results clearly demonstrate that, the mechanical effect of irrigation alone does not significantly influence the stability of biofilms. However, the mechanical effect promotes biofilm eradication by coupling with the chemical effect. In addition, both the irrigant concentration and the irrigant-biofilm contact time are among the key factors affecting the mechano-chemical coupling. This knowledge may serve to better direct endodontists in designing irrigation regimes during root canal therapy.  相似文献   

14.
Abstract

The self-produced extracellular polymeric matrix of biofilms renders them difficult to eliminate once they are established. This makes the inhibition of biofilm formation key to successful treatment of biofilm infection. Antimicrobial photodynamic therapy (aPDT) and antimicrobial peptides offer a new approach as antibiofilm strategies. In this study sub-lethal doses of aPDT (with chlorin-e6 (Ce6-PDT) or methylene blue (MB-PDT)) and the peptides AU (aurein 1.2 monomer) or (AU)2K (aurein 1.2?C-terminal dimer) were combined to evaluate their ability to prevent biofilm development by Enterococcus faecalis. Biofilm formation was assessed by resazurin reduction, confocal microscopy, and infrared spectroscopy. All treatments successfully prevented biofilm development. The (AU)2K dimer had a stronger effect, both alone and combined with aPDT, while the monomer AU had significant activity when combined with Ce6-PDT. Additionally, it is shown that the peptides bind to the lipoteichoic acid of the E. faecalis cell wall, pointing to a possible key mechanism of biofilm inhibition.  相似文献   

15.

Background

Chlorhexidine (CHX) is a widely used antimicrobial agent in dentistry. Herein, we report the synthesis of a novel mesoporous silica nanoparticle-encapsulated pure CHX (Nano-CHX), and its mechanical profile and antimicrobial properties against oral biofilms.

Methodology/Principal Findings

The release of CHX from the Nano-CHX was characterized by UV/visible absorption spectroscopy. The antimicrobial properties of Nano-CHX were evaluated in both planktonic and biofilm modes of representative oral pathogenic bacteria. The Nano-CHX demonstrated potent antibacterial effects on planktonic bacteria and mono-species biofilms at the concentrations of 50–200 µg/mL against Streptococcus mutans, Streptococcus sobrinus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Enterococccus faecalis. Moreover, Nano-CHX effectively suppressed multi-species biofilms such as S. mutans, F. nucleatum, A. actinomycetemcomitans and Porphyromonas gingivalis up to 72 h.

Conclusions/Significance

This pioneering study demonstrates the potent antibacterial effects of the Nano-CHX on oral biofilms, and it may be developed as a novel and promising anti-biofilm agent for clinical use.  相似文献   

16.
Abstract

This study aimed to test the dose-response effect of chlorhexidine on multispecies biofilms formed on commercially pure titanium (cpTi) and titanium-zirconium (TiZr) alloy. Biofilms were formed on cpTi and TiZr discs and treated two times per day with five different chlorhexidine concentrations (0.12, 0.20, 0.50, 1, 2%). The biofilms were collected for microbiological, biochemical and microscopic analyses. The significance of differences among groups was evaluated by linear regression, ANOVA, Bonferroni and Tukey tests. The mean number of colony-forming units decreased as the chlorhexidine concentration increased for both cpTi and TiZr (p?<?0.05). The maximum effect was observed with the 0.5% concentration. Confocal microscopy images suggested an increase in the number of dead bacterial cells with increased chlorhexidine concentration. The biofilm pH increased after chlorhexidine exposure (p?<?0.05). Chlorhexidine showed an antimicrobial dose-response effect in controlling biofilm on cpTi and TiZr. 0.5% chlorhexidine can be used to achieve the maximum antimicrobial effect on both materials.  相似文献   

17.

Background

Enterococcus faecalis is a significant cause of infective endocarditis, an infection of the heart endothelium leading to vegetation formation (microbes, fibrin, platelets, and host cells attached to underlying endothelial tissue). Our previous research determined that enterococcal aggregation substance (AS) is an important virulence factor in causation of endocarditis, although endocarditis may occur in the absence of AS production. Production of AS by E. faecalis causes the organism to form aggregates through AS binding to enterococcal binding substance. In this study, we assessed the ability of IgGs and IgG Fabs against AS to provide protection against AS+ E. faecalis endocarditis.

Methodology/Principal Findings

When challenged with AS+ E. faecalis, 10 rabbits actively immunized against AS+ E. faecalis developed more significant vegetations than 9 animals immunized against AS E. faecalis, and 9/10 succumbed compared to 2/9 (p<0.005), suggesting enhanced aggregation by IgG contributes significantly to disease. IgG antibodies against AS also enhanced enterococcal aggregation as tested in vitro. In contrast, Fab fragments of IgG from rabbits immunized against purified AS, when passively administered to rabbits (6/group) immediately before challenge with AS+ E. faecalis, reduced total vegetation (endocarditis lesion) microbial counts (7.9×106 versus 2.0×105, p = 0.02) and size (40 mg versus 10, p = 0.05). In vitro, the Fabs prevented enterococcal aggregation.

Conclusions/Significance

The data confirm the role of AS in infective endocarditis formation and suggest that use of Fabs against AS will provide partial protection from AS+ E. faecalis illness.  相似文献   

18.
Streptococcus mutans is a major etiologic agent of human dental caries that forms biofilms on hard tissues in the human oral cavity, such as tooth and dentinal surfaces. Human β-defensin-3 (HBD3) is a 45-amino-acid natural antimicrobial peptide that has broad spectrum antimicrobial activity against bacteria and fungi. A synthetic peptide consisting of the C-terminal 15 amino acids of HBD3 (HBD3-C15) was recently shown to be sufficient for its antimicrobial activity. Thus, clinical applications of this peptide have garnered attention. In this study, we investigated whether HBD3-C15 inhibits the growth of the representative cariogenic pathogen Streptococcus mutans and its biofilm formation. HBD3-C15 inhibited bacterial growth, exhibited bactericidal activity, and attenuated bacterial biofilm formation in a dose-dependent manner. HBD3-C15 potentiated the bactericidal and anti-biofilm activity of calcium hydroxide (CH) and chlorhexidine digluconate (CHX), which are representative disinfectants used in dental clinics, against S. mutans. Moreover, HBD3-C15 showed antimicrobial activity by inhibiting biofilm formation by S. mutans and other dentinophilic bacteria such as Enterococcus faecalis and Streptococcus gordonii, which are associated with dental caries and endodontic infection, on human dentin slices. These effects were observed for HBD3-C15 alone and for HBD3-C15 in combination with CH or CHX. Therefore, we suggest that HBD3-C15 is a potential alternative or additive disinfectant that can be used for the treatment of oral infectious diseases, including dental caries and endodontic infections.  相似文献   

19.
doi: 10.1111/j.1741‐2358.2011.00462.x
Antimicrobial activity of disinfectant agents incorporated into type IV dental stone Purpose: This study evaluated the antimicrobial activity of two disinfectant agents, 2% chlorhexidine digluconate solution (CHX) and 98% chlorhexidine hydrochloride powder (HYD), incorporated into type IV dental stone at the time of mixing. Material and methods: Agar diffusion test was used for the following microorganisms: Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Candida albicans. The specimens were grouped in: (1) dental stone mixed with sterile distilled water; (2) paper disc soaked with CHX; (3) dental stone mixed with CHX; and (4) dental stone with incorporation of HYD, in 1% proportion of the dental stone mass and mixed with sterile distilled water. The culture medium was inoculated with microbial suspensions 1 and 24 h after pouring of the dental stone. The antimicrobial activity was evaluated by the average diameter of microbial growth inhibition zones. The data were analysed with a nested anova (p < 0.05) and Tukey test for specific comparisons. Results: The disinfectant agents demonstrated antimicrobial activity against all microorganisms, with the exception of C. albicans, against which the CHX was ineffective in two periods of analysis. Significant differences between disinfectants were found with all microorganisms. Conclusion: The disinfectant agents analysed were effective against most of the microorganisms tested, except C. albicans.  相似文献   

20.
Corrosion causes dramatic economic loss. Currently widely used corrosion control strategies have disadvantages of being expensive, subject to environmental restrictions, and sometimes inefficient. Studies show that microbial corrosion inhibition is actually a common phenomenon. The present review summarizes recent progress in this novel strategy: corrosion control using beneficial bacteria biofilms. The possible mechanisms may involve: (1) removal of corrosive agents (such as oxygen) by bacterial physiological activities (e.g., aerobic respiration), (2) growth inhibition of corrosion-causing bacteria by antimicrobials generated within biofilms [e.g., sulfate-reducing bacteria (SRB) corrosion inhibition by gramicidin S-producing Bacillus brevis biofilm], (3) generation of protective layer by biofilms (e.g., Bacillus licheniformis biofilm produces on aluminum surface a sticky protective layer of γ-polyglutamate). Successful utilization of this novel strategy relies on advances in study at the interface of corrosion engineering and biofilm biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号