首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ralstonia solanacearum is a Gram‐negative soil‐borne bacterium that causes bacterial wilt disease in more than 200 plant species, including economically important Solanaceae species. In R. solanacearum, the hypersensitive response and pathogenicity (Hrp) type III secretion system is required for both the ability to induce the hypersensitive response (HR) in nonhost plants and pathogenicity in host plants. Recently, 72 effector genes, called rip (Ralstonia protein injected into plant cells), have been identified in R. solanacearum RS1000. RS1002, a spontaneous nalixidic acid‐resistant derivative of RS1000, induced strong HR in the nonhost wild eggplant Solanum torvum in an Hrp‐dependent manner. An Agrobacterium‐mediated transient expression system revealed that Rip36, a putative Zn‐dependent protease effector of R. solanacearum, induced HR in S. torvum. A mutation in the putative Zn‐binding motif (E149A) completely abolished the ability to induce HR. In agreement with this result, the RS1002‐derived Δrip36 and rip36E149A mutants lost the ability to induce HR in S. torvum. An E149A mutation had no effect on the translocation of Rip36 into plant cells. These results indicate that Rip36 is an avirulent factor that induces HR in S. torvum and that a putative Zn‐dependent protease motif is essential for this activity.  相似文献   

4.
Ralstonia solanacearum is the causal agent of bacterial wilt in solanaceous crops. This pathogen injects approximately 70 effector proteins into plant cells via the Hrp type III secretion system in an early stage of infection. To identify an as-yet-unidentified avirulence factor possessed by the Japanese tobacco-avirulent strain RS1000, we transiently expressed RS1000 effectors in Nicotiana benthamiana leaves and monitored their ability to induce effector-triggered immunity (ETI). The expression of RipB strongly induced the production of reactive oxygen species and the expressions of defence-related genes in N. benthamiana. The ripB mutant of RS1002, a nalixidic acid-resistant derivative of RS1000, caused wilting symptoms in N. benthamiana. A pathogenicity test using R. solanacearum mutants revealed that the two already known avirulence factors RipP1 and RipAA contribute in part to the avirulence of RS1002 in N. benthamiana. The Japanese tobacco-virulent strain BK1002 contains mutations in ripB and expresses a C-terminal-truncated RipB that lost the ability to induce ETI in N. benthamiana, indicating a fine-tuning of the pathogen effector repertoire to evade plant recognition. RipB shares homology with Xanthomonas XopQ, which is recognized by the resistance protein Roq1. The RipB-induced resistance against R. solanacearum was abolished in Roq1-silenced plants. These findings indicate that RipB acts as a major avirulence factor in N. benthamiana and that Roq1 is involved in the recognition of RipB.  相似文献   

5.
6.
The type III secretion system with its delivered type III effectors (T3Es) is one of the main virulence determinants of Ralstonia solanacearum, a worldwide devastating plant pathogenic bacterium affecting many crop species. The pan-effectome of the R. solanacearum species complex has been exhaustively identified and is composed of more than 100 different T3Es. Among the reported strains, their content ranges from 45 to 76 T3Es. This considerably large and varied effectome could be considered one of the factors contributing to the wide host range of R. solanacearum. In order to understand how R. solanacearum uses its T3Es to subvert the host cellular processes, many functional studies have been conducted over the last three decades. It has been shown that R. solanacearum effectors, as those from other plant pathogens, can suppress plant defence mechanisms, modulate the host metabolism, or avoid bacterial recognition through a wide variety of molecular mechanisms. R. solanacearum T3Es can also be perceived by the plant and trigger immune responses. To date, the molecular mechanisms employed by R. solanacearum T3Es to modulate these host processes have been described for a growing number of T3Es, although they remain unknown for the majority of them. In this microreview, we summarize and discuss the current knowledge on the characterized R. solanacearum species complex T3Es.  相似文献   

7.
Ralstonia solanacearum, the causal agent of bacterial wilt disease, is considered one of the most destructive bacterial pathogens due to its lethality, unusually wide host range, persistence and broad geographical distribution. In spite of the extensive research on plant immunity over the last years, the perception of molecular patterns from R. solanacearum that activate immunity in plants is still poorly understood, which hinders the development of strategies to generate resistance against bacterial wilt disease. The perception of a conserved peptide of bacterial flagellin, flg22, is regarded as paradigm of plant perception of invading bacteria; however, no elicitor activity has been detected for R. solanacearum flg22. Recent reports have shown that other epitopes from flagellin are able to elicit immune responses in specific species from the Solanaceae family, yet our results show that these plants do not perceive any epitope from R. solanacearum flagellin. Searching for elicitor peptides from R. solanacearum, we found several protein sequences similar to the consensus of the elicitor peptide csp22, reported to elicit immunity in specific Solanaceae plants. A R. solanacearum csp22 peptide (csp22Rsol) was indeed able to trigger immune responses in Nicotiana benthamiana and tomato, but not in Arabidopsis thaliana. Additionally, csp22Rsol treatment conferred increased resistance to R. solanacearum in tomato. Transgenic A. thaliana plants expressing the tomato csp22 receptor (SlCORE) gained the ability to respond to csp22Rsol and became more resistant to R. solanacearum infection. Our results shed light on the mechanisms for perception of R. solanacearum by plants, paving the way for improving current approaches to generate resistance against R. solanacearum.  相似文献   

8.
9.
Ralstonia solanacearum causes bacterial wilt disease in many plant species. Type III-secreted effectors (T3Es) play crucial roles in bacterial pathogenesis. However, some T3Es are recognized by corresponding disease resistance proteins and activate plant immunity. In this study, we identified the R. solanacearum T3E protein RipAZ1 (Ralstonia injected protein AZ1) as an avirulence determinant in the black nightshade species Solanum americanum. Based on the S. americanum accession-specific avirulence phenotype of R. solanacearum strain Pe_26, 12 candidate avirulence T3Es were selected for further analysis. Among these candidates, only RipAZ1 induced a cell death response when transiently expressed in a bacterial wilt-resistant S. americanum accession. Furthermore, loss of ripAZ1 in the avirulent R. solanacearum strain Pe_26 resulted in acquired virulence. Our analysis of the natural sequence and functional variation of RipAZ1 demonstrated that the naturally occurring C-terminal truncation results in loss of RipAZ1-triggered cell death. We also show that the 213 amino acid central region of RipAZ1 is sufficient to induce cell death in S. americanum. Finally, we show that RipAZ1 may activate defence in host cell cytoplasm. Taken together, our data indicate that the nucleocytoplasmic T3E RipAZ1 confers R. solanacearum avirulence in S. americanum. Few avirulence genes are known in vascular bacterial phytopathogens and ripAZ1 is the first one in R. solanacearum that is recognized in black nightshades. This work thus opens the way for the identification of disease resistance genes responsible for the specific recognition of RipAZ1, which can be a source of resistance against the devastating bacterial wilt disease.  相似文献   

10.
The subversion of plant cellular functions is essential for bacterial pathogens to proliferate in host plants and cause disease. Most bacterial plant pathogens employ a type III secretion system to inject type III effector (T3E) proteins inside plant cells, where they contribute to the pathogen‐induced alteration of plant physiology. In this work, we found that the Ralstonia solanacearum T3E RipAY suppresses plant immune responses triggered by bacterial elicitors and by the phytohormone salicylic acid. Further biochemical analysis indicated that RipAY associates in planta with thioredoxins from Nicotiana benthamiana and Arabidopsis. Interestingly, RipAY displays γ‐glutamyl cyclotransferase (GGCT) activity to degrade glutathione in plant cells, which is required for the reported suppression of immune responses. Given the importance of thioredoxins and glutathione as major redox regulators in eukaryotic cells, RipAY activity may constitute a novel and powerful virulence strategy employed by R. solanacearum to suppress immune responses and potentially alter general redox signalling in host cells.  相似文献   

11.
A syringe-like type III secretion system (T3SS) plays essential roles in the pathogenicity of Ralstonia solanacearum, which is a causal agent of bacterial wilt disease on many plant species worldwide. Here, we characterized functional roles of a CysB regulator (RSc2427) in Rsolanacearum OE1-1 that was demonstrated to be responsible for cysteine synthesis, expression of the T3SS genes, and pathogenicity of Rsolanacearum. The cysB mutants were cysteine auxotrophs that failed to grow in minimal medium but grew slightly in host plants. Supplementary cysteine substantially restored the impaired growth of cysB mutants both in minimal medium and inside host plants. Genes of cysU and cysI regulons have been annotated to function for Rsolanacearum cysteine synthesis; CysB positively regulated expression of these genes. Moreover, CysB positively regulated expression of the T3SS genes both in vitro and in planta through the PrhG to HrpB pathway, whilst impaired expression of the T3SS genes in cysB mutants was independent of growth deficiency under nutrient-limited conditions. CysB was also demonstrated to be required for exopolysaccharide production and swimming motility, which contribute jointly to the host colonization and infection process of Rsolanacearum. Thus, CysB was identified here as a novel regulator on the T3SS expression in R. solanacearum. These results provide novel insights into understanding of various biological functions of CysB regulators and complex regulatory networks on the T3SS in R. solanacearum.  相似文献   

12.
The soilborne bacterial pathogen Ralstonia solanacearum is one of the most destructive plant pathogens worldwide, and its infection process involves the manipulation of numerous plant cellular functions. In this work, we found that the R. solanacearum effector protein RipD partially suppressed different levels of plant immunity triggered by R. solanacearum elicitors, including specific responses triggered by pathogen-associated molecular patterns and secreted effectors. RipD localized in different subcellular compartments in plant cells, including vesicles, and its vesicular localization was enriched in cells undergoing R. solanacearum infection, suggesting that this specific localization may be particularly relevant during infection. Among RipD-interacting proteins, we identified plant vesicle-associated membrane proteins (VAMPs). We also found that overexpression of Arabidopsis thaliana VAMP721 and VAMP722 in Nicotiana benthamiana leaves promoted resistance to R. solanacearum, and this was abolished by the simultaneous expression of RipD, suggesting that RipD targets VAMPs to contribute to R. solanacearum virulence. Among proteins secreted in VAMP721/722-containing vesicles, CCOAOMT1 is an enzyme required for lignin biosynthesis, and mutation of CCOAOMT1 enhanced plant susceptibility to R. solanacearum. Altogether our results reveal the contribution of VAMPs to plant resistance against R. solanacearum and their targeting by a bacterial effector as a pathogen virulence strategy.  相似文献   

13.
14.
Xanthomonas oryzae pv. oryzae (Xoo) rapidly triggers a hypersensitive response (HR) and non‐host resistance in its non‐host plant Nicotiana benthamiana. Here, we report that Agrobacterium tumefaciens strain GV3101 blocks Xoo‐induced HR in N. benthamiana when pre‐infiltrated or co‐infiltrated, but not when post‐infiltrated at 4 h after Xoo inoculation. This suppression by A. tumefaciens is local and highly efficient to Xoo. The HR‐inhibiting efficiency of A. tumefaciens is strain dependent. Strain C58C1 has almost no effect on Xoo‐induced HR, whereas strains GV3101, EHA105 and LBA4404 nearly completely block HR formation. Intriguingly, these three HR‐inhibiting strains employ different strategies to repress HR. Strain GV3101 displays strong antibiotic activity and thus suppresses Xoo growth. Comparison of the genotype and Xoo antibiosis activity of wild‐type A. tumefaciens strain C58 and a set of C58‐derived strains reveals that this Xoo antibiosis activity of A. tumefaciens is negatively, but not solely, regulated by the transferred‐DNA (T‐DNA) of the Ti plasmid pTiC58. Unlike GV3101, strains LBA4404 and EHA105 exhibit no significant antibiotic effect on Xoo, but rather abolish hydrogen peroxide accumulation. In addition, expression assays indicate that strains LBA4404 and EHA105 may inhibit Xoo‐induced HR by suppression of the expression of Xoo type III secretion system (T3SS) effector genes hpa1 and hrpD6. Collectively, our results unveil the multiple levels of effects of A. tumefaciens on Xoo in N. benthamiana and provide insights into the molecular mechanisms underlying the bacterial antibiosis of A. tumefaciens and the non‐host resistance induced by Xoo.  相似文献   

15.
16.
Type IV pili (T4P) are virulence factors in various pathogenic bacteria of animals and plants that play important roles in twitching motility, swimming motility, biofilm formation, and adhesion to host cells. Here, we genetically characterized functional roles of a putative T4P assembly protein TapV (Rsc1986 in reference strain GMI1000) and its homologue Rsp0189, which shares 58% amino acid identity with TapV, in Ralstonia solanacearum. Deletion of tapV, but not rsp0189, resulted in significantly impaired twitching motility, swimming motility, and adhesion to tomato roots, which are consistent as phenotypes of the pilA mutant (a known R. solanacearum T4P-deficient mutant). However, unlike the pilA mutant, the tapV mutant produced more biofilm than the wild-type strain. Our gene expression studies revealed that TapV, but not Rsp0189, is important for expression of a type III secretion system (T3SS, a pathogenicity determinant of R. solanacearum) both in vitro and in planta, but it is T4P independent. We further revealed that TapV affected the T3SS expression via the PhcA–TapV–PrhG–HrpB pathway, consistent with previous reports that PhcA positively regulates expression of pilA and prhG. Moreover, deletion of tapV, but not rsp0189, significantly impaired the ability to migrate into and colonize xylem vessels of host plants, but there was no alteration in intercellular proliferation of R. solanacearum in tobacco leaves, which is similar to the pilA mutant. The tapV mutant showed significantly impaired virulence in host plants. This is the first report on the impact of T4P components on the T3SS, providing novel insights into our understanding of various biological functions of T4P and the complex regulatory pathway of T3SS in R. solanacearum.  相似文献   

17.
Diverse pathogen effectors convergently target conserved components in plant immunity guarded by intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) and activate effector-triggered immunity (ETI), often causing cell death. Little is known of the differences underlying ETI in different plants triggered by the same effector. In this study, we demonstrated that effector RipAW triggers ETI on Nicotiana benthamiana and Nicotiana tabacum. Both the first 107 amino acids (N1-107) and RipAW E3-ligase activity are required but not sufficient for triggering ETI on Nbenthamiana. However, on Ntabacum, the N1-107 fragment is essential and sufficient for inducing cell death. The first 60 amino acids of the protein are not essential for RipAW-triggered cell death on either Nbenthamiana or N. tabacum. Furthermore, simultaneous mutation of both R75 and R78 disrupts RipAW-triggered ETI on Ntabacum, but not on Nbenthamiana. In addition, Ntabacum recognizes more RipAW orthologs than Nbenthamiana. These data showcase the commonalities and specificities of RipAW-activated ETI in two evolutionally related species, suggesting Nicotiana species have acquired different abilities to perceive RipAW and activate plant defences during plant–pathogen co-evolution.  相似文献   

18.
Many Gram‐negative plant pathogenic bacteria express effector proteins of the XopQ/HopQ1 family which are translocated into plant cells via the type III secretion system during infection. In Nicotiana benthamiana, recognition of XopQ/HopQ1 proteins induces an effector‐triggered immunity (ETI) reaction which is not associated with strong cell death but renders plants immune against Pseudomonas syringae and Xanthomonas campestris pv. vesicatoria strains. Additionally, XopQ suppresses cell death in N. benthamiana when transiently co‐expressed with cell death inducers. Here, we show that representative XopQ/HopQ1 proteins are recognized similarly, likely by a single resistance protein of the TIR‐NB‐LRR class. Extensive analysis of XopQ derivatives indicates the recognition of structural features. We performed Agrobacterium‐mediated protein expression experiments in wild‐type and EDS1‐deficient (eds1) N. benthamiana leaves, not recognizing XopQ/HopQ1. XopQ recognition limits multiplication of Agrobacterium and attenuates levels of transiently expressed proteins. Remarkably, XopQ fails to suppress cell death reactions induced by different effectors in eds1 plants. We conclude that XopQ‐mediated cell death suppression in N. benthamiana is due to the attenuation of Agrobacterium‐mediated protein expression rather than the cause of the genuine XopQ virulence activity. Thus, our study expands our understanding of XopQ recognition and function, and also challenges the commonly used co‐expression assays for elucidation of in planta effector activities, at least under conditions of ETI induction.  相似文献   

19.
Ralstonia solanacearum is responsible for bacterial wilt affecting many crops worldwide. The emergent population of R. solanacearum (phylotype IIB/4NPB) wilts previously resistant varieties and has rapidly spread throughout Martinique. No conventional method is known to control it. In this study, previous crops used as sanitizing crops were investigated as an environmentally safe alternative method of control. The ability of the emergent population of R. solanacearum to persist in planta and in the rhizosphere of Brassicaceae, Asteraceae and Fabaceae grown as previous crops was evaluated in controlled conditions, and the incidence of bacterial wilt was assessed in the following tomato crop. Results showed that all species carried R. solanacearum latently. Among Brassicaceae and Asteraceae, the highest density of R. solanacearum was found in planta and in the rhizosphere of Tagetes erecta. The density of the R. solanacearum population in the rhizosphere of Raphanus sativus cv. Karacter was significantly higher than that in Raphanus sativus cv. Melody. In Fabaceae, the density of R. solanacearum population in planta was statistically similar in all species. The density of the R. solanacearum population in the rhizosphere of Crotalaria juncea was significantly higher than that in Crotalaria spectabilis. This study showed for the first time that Crotalaria spectabilis and Raphanus sativus cv. Melody grown as previous crops improve the performance of the following tomato with similar effects on R. solanacearum populations in the soil as bare soil. The incidence of the disease in tomato decreased by 86% and 60%, after R. sativus cv. Melody and C. spectabilis, respectively, and the proportion of infected plants also decreased. These results suggest that C. spectabilis and R. sativus cv. Melody can be used as previous crops to help bacterial wilt control in ecological management strategies without drastic suppression of R. solanacearum population in stem tissues and in the rhizosphere.  相似文献   

20.
Plant disease resistance proteins (R-proteins) detect specific pathogen-derived molecules, triggering a defence response often including a rapid localized cell death at the point of pathogen penetration called the hypersensitive response (HR). The maize Rp1-D21 gene encodes a protein that triggers a spontaneous HR causing spots on leaves in the absence of any pathogen. Previously, we used fine mapping and functional analysis in a Nicotiana benthamiana transient expression system to identify and characterize a number of genes associated with variation in Rp1-D21-induced HR. Here we describe a system for characterizing genes mediating HR, using virus-induced gene silencing (VIGS) in a maize line carrying Rp1-D21. We assess the roles of 12 candidate genes. Three of these genes, SGT1, RAR1, and HSP90, are required for HR induced by a number of R-proteins across several plant–pathogen systems. We confirmed that maize HSP90 was required for full Rp1-D21-induced HR. However, suppression of SGT1 expression unexpectedly increased the severity of Rp1-D21-induced HR while suppression of RAR1 expression had no measurable effect. We confirmed the effects on HR of two genes we had previously validated in the N. benthamiana system, hydroxycinnamoyltransferase and caffeoyl CoA O-methyltransferase. We further showed the suppression the expression of two previously uncharacterized, candidate genes, IQ calmodulin binding protein (IQM3) and vacuolar protein sorting protein 37, suppressed Rp1-D21-induced HR. This approach is an efficient way to characterize the roles of genes modulating the hypersensitive defence response and other dominant lesion phenotypes in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号