首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens.  相似文献   

2.
Constitutive and induced terpenoids are important defense compounds for many plants against potential herbivores and pathogens. In Norway spruce (Picea abies L. Karst), treatment with methyl jasmonate induces complex chemical and biochemical terpenoid defense responses associated with traumatic resin duct development in stems and volatile terpenoid emissions in needles. The cloning of (+)-3-carene synthase was the first step in characterizing this system at the molecular genetic level. Here we report the isolation and functional characterization of nine additional terpene synthase (TPS) cDNAs from Norway spruce. These cDNAs encode four monoterpene synthases, myrcene synthase, (-)-limonene synthase, (-)-alpha/beta-pinene synthase, and (-)-linalool synthase; three sesquiterpene synthases, longifolene synthase, E,E-alpha-farnesene synthase, and E-alpha-bisabolene synthase; and two diterpene synthases, isopimara-7,15-diene synthase and levopimaradiene/abietadiene synthase, each with a unique product profile. To our knowledge, genes encoding isopimara-7,15-diene synthase and longifolene synthase have not been previously described, and this linalool synthase is the first described from a gymnosperm. These functionally diverse TPS account for much of the structural diversity of constitutive and methyl jasmonate-induced terpenoids in foliage, xylem, bark, and volatile emissions from needles of Norway spruce. Phylogenetic analyses based on the inclusion of these TPS into the TPS-d subfamily revealed that functional specialization of conifer TPS occurred before speciation of Pinaceae. Furthermore, based on TPS enclaves created by distinct branching patterns, the TPS-d subfamily is divided into three groups according to sequence similarities and functional assessment. Similarities of TPS evolution in angiosperms and modeling of TPS protein structures are discussed.  相似文献   

3.
4.
In numerous locations in Europe spruce trees are exposed to high loads of nitrogen. The present study was performed to characterize the distribution of nitrogen compounds under these conditions. For this purpose Norway spruce ( Picea abies [L.] Karst.) trees were cultivated under close-to-natural conditions of a forest understory in soil from an apparently nitrogen-limited field site in the Black Forest either with, or without supplementation of nitrogen as ammonium nitrate. After 11 and 20 months, growth, total nitrogen contents of the biomass, and total soluble non-proteinogenic nitrogen compounds (TSNN, i.e. nitrate, ammonium, soluble proteinogenic and non-proteinogenic amino compounds) in needles, xylem sap and phloem exudate were analysed. After 20 months of growth, N-fertilization had slightly enhanced the biomass of current-, but not of 1-year-old shoots. At both harvests, total N-content of 1-year-old needles was increased by N-fertilization, whereas current-year needles were not significantly affected. By contrast, TSNN was elevated by N-fertilization in both current-year and 1-year-old needles. The increase in TSNN was mainly attributed to an accumulation of arginine. Xylem sap analysis showed that the increase in TSNN of the needles was a consequence of enhanced nitrogen assimilation of the roots rather than the shoot. Since also TSNN in phloem exudates was enhanced, it appears that N-fertilization elevates the cycling pool of amino compounds in young Norway spruce trees. However, this pool seems to be subject to metabolic interconversion, since mainly glutamine and aspartate are transported in the xylem from the roots to the shoot, but arginine accumulated in the needles and the phloem.  相似文献   

5.
Conifer needles are an important link in the cycling of Total Mercury (THg) and Methylmercury (MeHg) in the boreal ecosystem due to the high THg and MeHg concentrations in litterfall. Translocation within the tree of Hg from soils to the crown canopy has been assumed to be a minor source of the Hg in litterfall. This paper, however, is the first to present direct observations of THg/MeHg transport from the soil via xylem sap. Xylem sap concentrations of THg and MeHg were measured in sap drained from different levels along the boles of freshly cut 100 year old Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). The trees came from a mixed stand growing on podzolized till soils at the Svartberget Forest Research Station in N. Sweden. Soil solution concentrations of THg and MeHg at different levels in the soil profile were measured for comparison.Concentrations of THg in xylem sap ranged from 10–15 ng L-1 in both the Scots pine and Norway spruce. Concentrations of MeHg varied from 0.03 ng L-1to 0.16 ng L-1, with higher values in Scots pine than Norway spruce. If these concentrations are representative of the transport from soils to needles in xylem sap at this site, then only 3% of the MeHg in litterfall (0.12 mg ha-1 yr-1) and 11% of the THg (26 mg ha-1 yr-1) can originate via this pathway. The upward transport via xylem sap is larger relative to the open field inputs (84% of THg and 17% of MeHg). Comparison of soil solution and xylem sap THg/MeHg suggested some degree of THg exclusion during water uptake in Scots pine and Norway spruce, but MeHg exclusion only in Norway spruce.  相似文献   

6.
It is assumed that terpenoids in biomass-derived fuels have important influences on forest fires due to their enormous flammability. The fires consuming terpenoid-rich fuels always burn violently and spread fast. But the mechanism how terpenoids influence occurrence and propagation of fires are little known. Some terpenoids are volatile organic compounds (VOC) as they are released from vegetation and litter in natural environment. Hence, they contribute to the characteristic composition of the ambient air. Many studies have reported terpenoid emissions in natural environment from different perspective. Nevertheless there are only a few studies concerning terpenoid emissions from heated fuels. The present study explored the differences in terpenoid emissions from needles of Pinus sylvestris var. mongolica under natural and heated conditions. Terpenoids were sampled on Tenax-TA and analyzed using Thermal Desorption– Gas Chromatography–Mass Spectrometry (TD–GC–MS). The results showed that the emission rate of terpenoid from P. sylvestris in natural environment was low (0.167 lg g-1 h-1 DW). However, terpenoid emissions dramatically increased at the temperature of 200 °C, with a major component, a-pinene. Within 15 min, the emission of terpenoids emitted by heated needles was up to 16.314 lg g-1 DW for total and 10.321 lg g-1 DW for a-pinene. These considerable emissions of terpenoids from heated needles will have great influences on occurrence and propagation of forest fires.  相似文献   

7.
Scots pine (Pinus sylvestris L., Pinaceae) produces a terpenoid resin which consists of monoterpenes and resin acids that offer protection against herbivores and pathogen attacks. Methyl jasmonate (MJ) is a potential plant elicitor which induces a wide range of chemical and anatomical defence reactions in conifers and might be used to increase resistance against biotic damage. Different amounts of MJ (control, 10 mm , and 100 mm ) were applied to Scots pine to examine the vigour, physiology, herbivory performance, and induction of secondary compound production in needles, bark, and xylem of 2‐year‐old Scots pine seedlings. Growth decreased significantly in both MJ treated plants, and photosynthesis decreased in the 100 mm MJ treated plants, when compared to 10 mm MJ or control plants. The large pine weevil (Hylobius abietis L.) (Coleoptera: Curculionidae) gnawed a significantly smaller area of stem bark in the 100 mm treated plants than in the control or 10 mm treated plants. The 100 mm MJ treatment increased the resin acid concentration in the needles and xylem but not in the bark. Furthermore, both MJ treatments increased the number of resin ducts in newly developing xylem. The changes in plant growth and chemical parameters after the MJ treatments indicate shifts in carbon allocation, but MJ also affects plant physiology and xylem development. Terpenoid resin production was tissue‐specific, but generally increased after MJ treatments, which means that this compound may offer potential protection of conifers against herbivores.  相似文献   

8.
9.
Xylem sap composition of spruce is influenced by several factors, such as the sampled organ, the sampling period, the availability of soil nutrients, and the soil water potential. Based on literature data and ongoing investigations carried out with adult trees, we present an overview on the main factors influencing xylem sap concentrations of Norway spruce. Direct measurements of nutrient fluxes in the xylem sap are then used to suggest a general scheme of mineral element cycling within adult trees. In Norway spruce (Picea abies Karst.), nutrient concentration in the xylem sap was higher in twigs and fine roots compared to the bottom of the trunk, the highest concentrations beeing observed in spring during the shoot elongation. Xylem sap concentrations were higher in spruce growing at nutrient rich sites than at poor sites. The combination of twig and trunk xylem sap analysis, together with xylem flow measurements in the trunk during the course of a vegetation period allowed the quantification of mineral fluxes via xylem sap flow in the trunk and twigs. These results were compared to gross mineral uptake measurements at the same site. Ca flux in the trunk xylem sap was lower than the gross uptake of Ca. Mg flux in trunk sap was approximately equivalent to Mg gross uptake whereas P and K fluxes in trunk sap were much higher than the gross uptake. Fluxes of Ca, Mg, K and P in the twig sap were much higher than that in trunk sap. Data suggest that internal cycling is responsible for a large part of the nutrient fluxes in the xylem sap of the crown. Xylem sap composition thus appears to be a tool which can complement other sources of information on mineral uptake and cycling in adult spruce  相似文献   

10.
Soil solution, xylem sap and needles of mature trees were sampled in three spruce stands over one vegetation period and analysed for major cations. Investigations of nutrient distribution between these three pools and evaluations of seasonal dynamics give the following results: The highest nutrient concentrations in the xylem sap occur at the time of bud break and become gradually lower during the vegetation period. The trees show similar trends of xylem sap concentrations with time for potassium, calcium and magnesium regardless of the nutritional status of the plots. No coupling of xylem sap to soil solution composition can be observed in spite of a high variability of soil solution chemistry in time. The major cations in the current needles exhibit a significantly different trend with time. No time-based correlations for nutrient contents could be found for the needles from the previous year.Despite mobilisation of storage pools in the deficient stand, trees are not able to increase the Ca and Mg contents in the needles up to the level of the other stands. Potassium could be retranslocated in sufficient extent for nutrition of current needles. Due to seasonal variability and dependence upon internal processes, such as retranslocation and mobilisation of nutrients, xylem sap does not seem to be a good tool for the estimation of the nutritional status of forest sites.It was concluded that only minor transport into new foliage via xylem sap will proceed after nutrient flush during the bud break and the nutrient content in the new biomass will be governed by dilution due to biomass growth or by nutrient transport by other means than xylem sap.  相似文献   

11.
14C-Gln, (14)C-Asp, (15)N-Gln, and (15)N-Asp were fed to cut tips of 2- or 3-year-old needles of spruce twigs, still attached to the tree. After incubation, distribution of the radiolabel and (15)N enrichment was studied in needles, bark and wood tissues of girdled twigs and untreated controls. Analysis of the twig tissues showed that between 22% and 26% of the total amount of the tracers applied had been taken up. Since export out of the application segment and distribution between needles, bark and wood was comparable for (14)C and (15)N tracer, it was concluded that, mainly the amino compounds that had been fed were subject to long- distance transport within the plant and supplied the new sprout with nitrogen. Asp was exported to a greater extent to developing needles compared with Gln. This difference in export between the two amino compounds applied may be explained by the different pool sizes of Gln and Asp in xylem and phloem or differences in xylem and phloem loading. Girdling of the stem showed that the transport of reduced nitrogen compounds from older needle generations to current-year needles proceeded in both xylem and phloem. In addition, an intensive bidirectional exchange of Gln and Asp between xylem and phloem was observed during long-distance transport.  相似文献   

12.
The terpenoid and phenolic constituents of conifers have been implicated in protecting trees from infestation by bark beetles and phytopathogenic fungi, but it has been difficult to prove these defensive roles under natural conditions. We used methyl jasmonate, a well-known inducer of plant defense responses, to manipulate the biochemistry and anatomy of mature Picea abies (Norway spruce) trees and to test their resistance to attack by Ips typographus (the spruce bark beetle). Bark sections of P. abies treated with methyl jasmonate had significantly less I. typographus colonization than bark sections in the controls and exhibited shorter parental galleries and fewer eggs had been deposited. The numbers of beetles that emerged and mean dry weight per beetle were also significantly lower in methyl jasmonate-treated bark. In addition, fewer beetles were attracted to conspecifics tunneling in methyl jasmonate-treated bark. Stem sections of P. abies treated with methyl jasmonate had an increased number of traumatic resin ducts and a higher concentration of terpenes than untreated sections, whereas the concentration of soluble phenolics did not differ between treatments. The increased amount of terpenoid resin present in methyl jasmonate-treated bark could be directly responsible for the observed decrease in I. typographus colonization and reproduction.  相似文献   

13.
Most plant‐based emissions of volatile organic compounds are considered mainly temperature dependent. However, certain oxygenated volatile organic compounds (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in the xylem sap. Yet further understanding on the role of transport has been lacking until present. We used shoot‐scale long‐term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of 3 water‐soluble OVOCs: methanol, acetone, and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the 3 OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of the temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in the xylem sap from their sources in roots and stem to leaves and to ambient air.  相似文献   

14.
Application of 100 mmol/L methyl jasmonate (MJ) to the intact bark of 30-yr-old Norway spruce induced anatomical reactions related to defense. Within 30 d, a single MJ treatment induced swelling of existing polyphenolic parenchyma cells (PP cells) and an increase in their phenolic contents and formation of additional PP cells and of traumatic resin ducts (TDs) at the cambial zone. These changes occurred up to 7 cm away from the application zone. Treatment enhanced resin flow and increased resistance to the blue-stain fungus, Ceratocystis polonica. Methyl jasmonate application to the oldest internode of 2-yr-old saplings also induced TD formation, and, more surprisingly, TDs were formed in the untreated internode. Traumatic ducts were not formed in branches, ruling out an effect of volatile MJ on the upper internode. Methyl jasmonate application never gave rise to a hypersensitive response, cell death, tissue necrosis, or wound periderm, indicating the amount of MJ transported across the periderm was very low relative to the application concentration. This is the first report of a single compound giving rise to major cellular features related to acquired resistance and previously shown to be induced by wounding, fungal infection, and bark beetles in Norway spruce.  相似文献   

15.
16.
Bark necrosis and resin flows in Norway spruce have increased in southern Sweden over the last few decades. Frost damage late in spring has been suggested as a possible cause, but other factors besides the climate may have contributed to the damage. The nutrient status influences the hardening processes and plants with poor nutritional conditions have an increased sensitivity to frost. In this study the sensitivity to frost of bark and the hardiness status of needles of Norway spruce were compared with the nutrient status at two sites with different soil fertility. The trees were 30-40 years old. The hardiness status of the bark and needles was negatively affected by low concentrations of P and Mg.  相似文献   

17.
Nitrogen and Cation Nutrition of Three Ecologically Different Plant Species   总被引:1,自引:0,他引:1  
Apple rootstocks M.7 were given a nitrogen application either in the spring or in the preceding autumn. At the time of the spring application some rootstocks were ringed. During the 50-day experimental period from bud-break, shoot growth and the amount of nitrogen incorporated into the new shoots were slightly reduced in the spring-treated trees and strongly reduced in the ringed trees of both treatments. Roots of unringed autumn-fertilized trees showed higher levels of total and amino nitrogen than those of similar trees in the spring treatment; to a lesser degree, the reverse held for xylem sap from the stem. Ringing increased the amino-nitrogen level in the roots, which suggests a reduced translocation rate. The nitrogen treatments led to marked differences in the percentage composition of the amino-nitrogen fraction of roots and xylem sap. The distribution of amino acids and amides in the roots and that in xylem sap of the same trees was divergent, but arginine and asparagine often were the most important constituents. Aspartic acid was rather abundant in xylem sap. Ringing did not affect the composition of the amino-nitrogen fraction in the roots quantitatively but increased the proportion of arginine in the sap. The possible relationship between the composition of xylem sap and soluble nitrogen in the roots is discussed. It is argued that especially in spring-fertilized trees appreciable amounts of nitrogen must be translocated via the phloem in addition to the transport in the xylem.  相似文献   

18.
19.
Interactions between calcium and copper or cadmium in Norway spruce   总被引:3,自引:0,他引:3  
The accumulation of calcium (Ca), copper (Cu) and cadmium (Cd) in roots and stem of Norway spruce (Picea abies [L.] Karst) was examined. Two-year-old Norway spruce seedlings were treated with elevated concentrations of Ca, Cd or Cu, or as combinations of Ca with Cu or Cd in nutrient solutions for three months. The stem was divided into bark, wood formed during the treatment period (new wood), and wood formed before the treatment period (old wood). The accumulation of the metals in stem and roots increased with addition of the respective metal into nutrient solution. Addition of Cu decreased the accumulation of Ca in roots and wood, and Ca addition decreased the accumulation of Cu in the new wood. By adding Ca in combination with Cu the accumulation of Cu in the stem was decreased even more by Ca and the negative effect of Cu on the Ca content in the stem was diminished. Addition of Cd decreased the accumulation of Ca in wood, especially the old wood, and Ca addition decreased the accumulation of Cd in roots, bark and new wood. By adding Ca in combination with Cd the Ca content was reduced in the bark, instead of in the old wood.  相似文献   

20.
Volatile organic compounds (VOCs) emitted from vegetation to the atmosphere contribute to global climate change, but climate change factors also affect VOC emission from vegetation. Soil-grown Norway spruce seedlings were exposed to elevated ozone (1.4 × ambient ozone concentration) and elevated temperature (ambient + 1.3 °C) alone and in combination as well as to ambient ozone and temperature treatments under open-field conditions. VOC emissions (mainly terpenoids), genes involved in early steps of plastidial monoterpene and isoprene synthesis, photosynthetic parameters and growth were measured. In July, when daytime elevated ozone concentrations had been over 40 ppb, ozone doubled the total terpenoid emissions by increasing the emissions of many monoterpenes and sesquiterpenes. Elevated temperature changed the terpenoid profile by increasing the emissions of oxygenated monoterpenes, but did not influence total emissions. Terpenoid emission profiles also differed between elevated ozone alone and elevated ozone in combination with elevated temperature. In August, when daytime elevated ozone concentrations had been ca. 30 ppb, significant treatment effects were not found. Ozone and temperature reduced the expression of DXS2B (1-deoxy-d-xylulose 5-phosphate synthase type II), and ozone that of DXR (1-deoxy-d-xylulose 5-phosphate reductoisomerase) in August. Elevated temperature reduced the stem diameter growth, net photosynthesis and stomatal conductance, but elevated ozone did not have effects on these parameters. Results suggest that elevated temperature may not modify the ozone responses, or vice versa, in terms of gas exchange, growth or total terpenoid emission rates of young Norway spruces in a near-future climate. However, observed changes in terpenoid emission profiles may be important in the future climate, as reactivity in the troposphere differs between individual terpenoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号