首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to assess the importance of sexual and asexual reproduction during the life history of Scirpus mariqueter, its reproductive and growth characters were concurrently examined along an elevational gradient (from low elevation to high elevation). The proportions of flowering shoot and inflorescence mass, seed : flower ratio and seed weight were used to quantify the investment in sexual reproduction. The proportions of current-year shoot and rhizome mass were used to quantify the investment in asexual reproduction, and the proportion of corm mass was used for growth, respectively. It was found that vegetative propagation predominated at low elevation, whereas sexual reproduction predominated at high elevation; and that sexual reproduction increased with declining asexual reproduction along the gradient. The results suggest that asexual reproduction is relatively favored in the early life stage, whereas sexual reproduction is favored when the population becomes mature and aged, probably because of the functional differentiation between the two reproductive types. Sexual productive characters (i.e. the proportions of flowering shoot and inflorescence mass) were negatively correlated to both growth and asexual reproductive characters along the gradient, indicating there might exist some trade-offs among growth, sexual and asexual reproduction during the life history. However, no obvious pattern was found between asexual reproductive characters and growth characters along the elevational gradient, possibly because of the varied relationships between them at different life stages. The variations in sexual and asexual reproduction in the species and the relationship between them are thought to be of great significance for local population growth, species persistence and evolution.  相似文献   

2.

Background and Aims

Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale.

Methods

Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass.

Key Results

The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females.

Conclusions

Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and females for prezygotic reproductive investment is the highest known for bryophytes.  相似文献   

3.
Even though many aspects of Dictyocha fibula and D. speculum have long been studied, very little is known about D. octonaria. For the first time a clonal culture derived from a single cell of D. octonaria from Wellington Harbour was studied in detail. In the skeleton‐bearing stage three morphotypes were observed – skeleton bearing, mucocyst‐bearing and amoeboid, while in the naked stage only the naked form was studied. In this study the mucocyst‐bearing form was described as a new morphotype. Vegetative reproduction of the skeleton‐bearing form in the exponential growth phase was by both direct binary fission and by first forming a doublet and then two separate daughter cells, while that of naked form was by simple binary fission. Occasionally double skeletons were observed as end products of both the vegetative and sexual reproductions. In sexual reproduction all three forms in the skeleton‐bearing stage exhibited the same polymorphic life history involving a multinucleate stage. The newly formed daughter cells of all three forms developed individual siliceous skeletons prior to being released from the parent cell. The naked form in the naked stage, however, exhibited a separate polymorphic life history that produced only skeleton‐free daughter cells. For the first time both vegetative and sexual reproduction of D. octonaria were documented.  相似文献   

4.
To analyse the whole life of higher plants, an attempt was made to describe their growth and reproduction by mathematical models based on the elements determining matter production and economy of the matter. A plant body was regarded as a compound system of two parts; “productive part” and “reproductive part”. A parameter (reproductive index) was introduced to connect these two parts, and a set of the mathematical models describing the quantitative growth of these two parts were established. Two basic patterns of reproduction in higher plants were distinguished into “D-reproduction” and “I-reproduction”. The state of matter production of the mother plant determined an initial size of the daughter plant in theD-reproduction, while, in theI-reproduction, it did not determine the initial size of the daughter, but determined the number of propagules. The model of each reproduction pattern was also constructed. A formula determining the initial size of a plant in a given generation was constructed as the model of theD-reproduction. The model for theI-reproduction described the number of propagules produced in a given generation. Some aspects of the plant life, e.g. the optimum reproductive index, the switch-over time from the vegetative to the reproductive growth phase, the seed number, types of expansive reproduction, were theoretically analysed and discussed under these mathematical models.  相似文献   

5.
Asexual reproduction s. l. is widespread in plants and also a basic reproductive mechanism in bryophytes. Today, three types of asexual reproduction are recognized: (1) the asexual reproduction s. str. by regeneration from ± specialized caducous organs (leaves, leaf apices, shoots, branches, bulbils) and by production of specialized propagules (gemmae, protonemal brood cells, tubers), (2) fragmentation of plants, resp. part of plants into ± unspecialized fragments, and (3) clonal reproduction (cloning). The latter occurs in bryophytes by protonema decay, by disintegration of modules, resp. formation of ramets (dividuals, “daughter plants”) that leads to self-cloning or forced-cloning of parts of the gametophyte (shoots, stoloniferous and rhizomatous axes, rhizoid wicks, basiscopic innovation plants). Clonal reproduction (cloning), in former time scarcely noted, gained great interest within the last decade mainly in vascular plants showing clonal growth. This reproduction mechanism is thought to be a keystone factor for asexual reproduction, habitat colonization and habitat maintenance. Species which reproduce clonally are able to colonize and maintain habitats in an effective way by the so-called “consequent vegetative multiplication”. The review presents an overview of the current state of knowledge of asexual reproduction types in bryophytes, with a focus on fragmentation and clonal reproduction (cloning), the mechanisms of habitat colonization and habitat maintenance, which all are of important significance in the dynamic processes of development of bryophyte populations.  相似文献   

6.
Because monocarpic perennial plants have only one reproductive opportunity in their entire life, they need to ensure offspring production. Some plants reproduce both sexually and vegetatively, and vegetative reproduction could possibly compensate for seed production. Therefore, the role and significance of these reproductive modes is likely to differ between monocarps and polycarps, which can reproduce many times. Cardiocrinum cordatum var. glehnii is a monocarpic perennial that reproduces both sexually and vegetatively (bulblet formation). Here, we investigated the characteristics and contribution to population maintenance of sexual and vegetative reproduction to reveal the significance of these two reproductive modes in this species. First, we found that bulblet formation occurred in plants after the three‐leaved rosette stage. Second, resource allocation experiments revealed that although resources were mainly invested in fruit maturation after the flowering season, resource allocation was switched from sexual reproduction to vegetative reproduction if seed production was insufficient. Third, the outcrossing rate in this species varied greatly according to the environment surrounding the population. However, reproductive assurance by selfing kept seed production stable even if flowers did not receive sufficient pollen for full seed set via outcross pollination, and moreover, there was no intensive inbreeding depression. Finally, genotypic identification of ramets suggested that daughter ramets derived from vegetative reproduction received the space that the mother flowering ramet had occupied until the previous year.  相似文献   

7.
8.
Resource allocation patterns of two California-Sonoran desert ephemerals   总被引:1,自引:0,他引:1  
Summary The patterns of allocation of structural and nonstructural carbon were followed in the co-occurring desert ephemerals Plantago insularis and Camissonia boothii. Patterns of biomass distribution were determined from material harvested at biweekly intervals as were levels of nonstructural sugar and starch. Seasonal patterns of growth and reproduction differed markedly with Plantago allocating significantly more structural and nonstructural carbon to reproduction early in the season. Plantago completed its life cycle in less than 60 days but Camissonia continued both vegetative and reproductive growth to over 100 days. The longer growing season of Camissonia was possible because more energy was allocated to vegetative tissues and storage presumably as investment toward longer life and higher levels of reproduction.  相似文献   

9.
Sclerasterias richardi, a relatively deep sea asteroid (140–200 m) from the border of the Mediterranean continental shelf, is characterized by an asexual reproduction by fissiparity concomitant with a functional sexuality.

A monthly sampling of a population from Calvi (Corsica) has allowed a study of the complete sexual cycle from 354 histologically-treated specimens.

The 218 sexually defined animals (62% males, 38% females) show strict gonochorism. In males, spermatogenesis is cyclic and sexual maturity seems to be reached before that of the females. In females, the different stages of oogenesis are well marked: oogonia and parietal oocytes disappear only at maturity. Oligolecithic oocytes (120–150 μn) show a synchronous growth.

The annual reproductive cycle is well defined in both sexes with one spawning period from mid-September to mid-October.

After spawning, a resting period (from mid-October to mid-January) occurs during which unspawned oocytes are phagocytized by more or less isolated accessory cells. These phagocytic cells have never been found in male specimens.

Each month the presence of specimens without gonads or unsexable individuals is one of the characteristics of this cycle. Their high proportion during the organization stage and after spawning can be easily explained. In March they are frequent too, owing to the infestation of gonads by Ciliates.

As shown by our samples, the bottom water temperature is nearly the same during the whole year and cannot be directly involved as the dominant exogenous variable stimulating spawning.

As a consequence of fissiparity which affects the main part of the population there is a great inter- and intra-individual variability.

The reproductive potentiality is low: as a female emits approximatly 400–500 ova whose development produces planktotrophic larvae with a long pelagic life, it is clear that sexual reproduction is accessory in comparison with asexual reproduction by fission.  相似文献   

10.
The enormous success of the genus Daphnia in freshwater ecosystems is at least partially due to their cyclical parthenogenetic life cycle, in which asexual and sexual reproduction alternate periodically. This temporal change between reproductive strategies allows for (1) rapid population growth via subitaneously developing eggs when environmental conditions are appropriate and (2) the maintenance of genetic diversity via sexual reproduction and the production of resting eggs when environmental conditions deteriorate. We show here that dietary amino acids are involved in triggering the switch between reproductive modes in Daphnia pulex. Supplementation experiments demonstrate that specific dietary amino acids, in particular arginine and histidine, avert crowding-induced resting egg production, enhance subitaneous reproduction by increasing algal food quality and, as a combined effect of both processes, increase population growth rates. These findings suggest that the availability of single dietary amino acids potentially affects the seasonal dynamics and long-term persistence of Daphnia populations in the field, which may have consequences for the efficiency of carbon transfer and thus the trophic structure of freshwater food webs.  相似文献   

11.
Three cultured species of Pyrocystis (Dinoccoccales) reproduced asexually by forming 2 (or 1) aplanospores or zoospores inside the parent cell wall. In all 3 species these small reproductive cells, although they may not resemble the parent cells, swell up rapidly (~ 10 min) to the approximate size and shape of the parent cell. These swollen cells become new vegetative cells. The above asexual process is the only way by which cells numbers increase in our cultures. Pyrocystis lunula was propagated at the lunula stage of the life cycle. The nonmotile crescent-shaped cells produced reproductive cells that were Gymnodinium-shaped and had, in some cases, a trailing flagellum. With P. fusiformis and P. noctiluca, the reproductive cells were not flagellated. With P. fusiformis, these bodies had a pronounced equatorial constriction like a girdle, while in P. noctiluca the “girdle” was an inconspicuous feature if present. With P. noctiluca and P. fusiformis on a 12:12 ld cycle, reproductive cells were formed early in the dark period and they swelled up at the beginning of the light period. Reproduction of P. lunula was not well phased in our experiments, with reproductive cells developing at the end of the light period and the end of the dark period.  相似文献   

12.
This paper examines the cost of meiosis in a species with an alternation of sexual and asexual generations (e.g. Daphnia), by means of calculations of the survival probabilities of mutant genes causing patterns of wholly asexual reproduction. It is shown that the survival probabilities of such mutations are lower with an alternation of sexual and asexual generations than with an initial population which reproduces exclusively sexually. The survival probabilities decrease as the number of asexual generations within each reproductive cycle increases. It is argued that these results imply a lower than usual cost of meiosis when there is an alternation of generations, and that asexual reproduction cannot simply be equated with vegetative growth of a single multicellular organism.  相似文献   

13.
Background information. The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo‐erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. Results. In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo‐erythrocytic schizogony in vitro, leading to impaired parasite maturation. Conclusions. Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red‐blood‐cell‐infective merozoites.  相似文献   

14.
Growth and reproduction in higher plants depend on meristems, which have three developmental fates. A meristem can become reproductive, but doing so terminates its activity, it can differentiate vegetatively, or it can remain quiescent for extended periods. The first two fates are mutually exclusive, and only the second leads to the production of additional meristems for subsequent growth and reproduction. In Polygonum arenastrum (frequently referred to as P. aviculare in North American Floras), an annual species lacking quiescent meristems, a quantitative genetic analysis of inbred full-sibling families revealed genetic variation in the developmental pattern of axillary meristem commitment to vegetative growth versus reproduction. Developmental variation resulted in family differences in the age of first reproduction, in age-specific fecundity and growth, and in final plant size and reproductive output. Furthermore, there were strong negative genetic correlations between age-specific growth and fecundity. Early commitment of meristems to reproduction favors high early fecundity, but reduces the number of meristems available for vegetative differentiation, and leads to lowered growth rates and fecundity later in life, when meristems are limiting. Conversely, meristem commitment to vegetative growth early in life results in low early fecundity but high late fecundity and growth. Meristem limitation, like resource limitation, is a proximate mechanism that generates trade-offs between life history traits. Differences between meristem limitation and resource limitation are discussed. Meristem limitation leads automatically to a senescent life history because of the determinate fate of reproductive meristems. Developmental characters were also found to be genetically correlated with metamer characters (leaf size, internode length) and seed size in this selfing species. The pattern of correlation is suggestive of selection for particular suites of life history and morphological characters.  相似文献   

15.
The timing of replication and division of the Chlamydomonas Ehrenberg nucleus in the vegetative cell cycle and at gametogenesis was examined, using fluorescence microspectrophotometry with two fluorochromes, mithramycin and 4′,6-diamidino-2-phenylindole (DAPI). Under appropriate conditions, these bind specifically to DNA, and the fluorescence of the DNA fluorochrome complex is a quantitative measure of the DNA content. The alga is a haplont, which produces 2n daughter cells at the time of vegetative reproduction; cytokinesis and daughter cell release lag behind karyokinesis. No nucleus was found to contain more than the 2c quantity of DNA. Hence daughter cell production proceeds by doubling of the nuclear DNA followed by karyokinesis, in a repetitive sequence. As reported previously for C. reinhardtii Dangeard, the gametes of C. moewusii Gerloff contain the 1c amount of nuclear DNA. Several conflicting interpretations of the cell cycle sequence proposed in the literature were resolved.  相似文献   

16.
The reproductive significance of siliceous cysts (statospores) produced by the common vernal chrysophyte Dinobryon cylindricum Imhof has been investigated under defined culture conditions. Three types of statospores have thus far been induced in culture: 1) uninucleate, asexual; 2) binucleate, asexual (potentially autogamic); 3) binucleate, sexual (zygotic). The production of each type of cyst responds differently to an array of nutrient deficiencies (P, N, vitamins, micrometals). An individual clone may be capable of participating in the production of all or only a subset of these types of resting cysts. All D. cylindricum statospores are morphologically identical regardless of their reproductive significance. Sexual reproduction leading to zygotic statospore formation is anisogamous, heterothallic, and involves a gametogenic hormone (erogen) that is apparently continuously released from female clones. Only a single bipolar mating group is documented here and clonal compatibility varies considerably within the mating group. The dynamics of encystment for each type of statospore has been determined relative to the growth of the vegetative cell population. Statospores may be produced either during the exponential phase (intrinsic encystment) or stationary phase (extrinsic encystment) of culture growth depending on the clones involved. The effect of both asexual and sexual resting cyst production on the net growth rate and dynamics of natural chrysophyte populations is discussed. Statospores appear to represent a more flexible reproductive strategy than the resistant zygospores produced by the other common groups of planktonic microalgae.  相似文献   

17.
Ploidy elevation is increasingly recognized as a common and important source of genomic variation. Even so, the consequences and biological significance of polyploidy remain unclear, especially in animals. Here, our goal was to identify potential life history costs and benefits of polyploidy by conducting a large multiyear common garden experiment in Potamopyrgus antipodarum, a New Zealand freshwater snail that is a model system for the study of ploidy variation, sexual reproduction, host–parasite coevolution, and invasion ecology. Sexual diploid and asexual triploid and tetraploid P. antipodarum frequently coexist, allowing for powerful direct comparisons across ploidy levels and reproductive modes. Asexual reproduction and polyploidy are very often associated in animals, allowing us to also use these comparisons to address the maintenance of sex, itself one of the most important unresolved questions in evolutionary biology. Our study revealed that sexual diploid P. antipodarum grow and mature substantially more slowly than their asexual polyploid counterparts. We detected a strong negative correlation between the rate of growth and age at reproductive maturity, suggesting that the relatively early maturation of asexual polyploid P. antipodarum is driven by relatively rapid growth. The absence of evidence for life history differences between triploid and tetraploid asexuals indicates that ploidy elevation is unlikely to underlie the differences in trait values that we detected between sexual and asexual snails. Finally, we found that sexual P. antipodarum did not experience discernable phenotypic variance‐related benefits of sex and were more likely to die before achieving reproductive maturity than the asexuals. Taken together, these results suggest that under benign conditions, polyploidy does not impose obvious life history costs in P. antipodarum and that sexual P. antipodarum persist despite substantial life history disadvantages relative to their asexual counterparts.  相似文献   

18.
The extent of changes in basic physiological and demographic traits associated with reproduction was investigated in the highly cultivated haploid–diploid red alga, Gracilaria chilensis. Sixty individuals bearing vegetative and reproductive fronds collected in the natural population of Niebla (39°52′?S, 73°23′?W), in Chile, were cultivated under controlled culture conditions. Our results demonstrated that vegetative fronds have a higher survival rate and a better growth rate than reproductive ones irrespective of the type of individual analyzed (male gametophyte, female gametophyte, and tetrasporophyte). Moreover, the reproductive fronds clearly showed a decrease in photosynthetic activity compared to non-reproductive ones. In males and tetrasporophytes, the photosynthetic reduction in reproductive individuals could be explained by a physical effect of reproductive structure development as well as spores release, disrupting the continuity of the photosynthetic cortical tissues. Translocation of photoassimilates from nearby vegetative tissue or the previous accumulation of photosynthetic products seems to be a prerequisite for reproductive structure development in this species. Altogether, these results document for the first time in G. chilensis that reproduction has a strong physiological effect on male, female, and tetrasporophyte fronds. This trade-off between reproduction, growth, and survival suggest the existence of reproductive costs in the life history of G. chilensis.  相似文献   

19.
20.
In assessing the capacity of plants to adapt to rapidly changing global climate, we must elucidate the impacts of elevated carbon dioxide on reproduction, fitness and evolution. We investigated how elevated CO2 influenced reproduction and growth of plants exhibiting a range of floral morphologies, the implications of shifts in allocation for fitness in these species, and whether related taxa would show similar patterns of response. Three herbaceous, annual species each of the genera Polygonum, Ipomoea, and Cassia were grown under 350 or 700 ppm CO2. Vegetative growth and reproductive output were measured non-destructively throughout the full life span, and vegetative biomass was quantified for a subsample of plants in a harvest at first flowering. Viability and germination studies of seed progeny were conducted to characterize fitness precisely. Early vegetative growth was often enhanced in high-CO2 grown plants of Polygonum and Cassia (but not Ipomoea). However, early vegetative growth was not a strong predictor of subsequent reproduction. Phenology and production of floral buds, flowers, unripe and abscised fruits differed between CO2 treatments, and genera differed in their reproductive and fitness responses to elevated CO2. Polygonum and Cassia species showed accelerated, enhanced reproduction, while Ipomoea species generally declined in reproductive output in elevated CO2. Seed quality and fitness (in terms of viability and percentage germination) were not always directly correlated with quantity produced, indicating that output alone may not reliably indicate fitness or evolutionary potential. Species within genera typically responded more consistently to CO2 than unrelated species. Cluster analyses were performed separately on suites of vegetative and reproductive characters. Some species assorted within genera when these reproductive responses were considered, but vegetative responses did not reflect taxonomic affinity in these plants. Congeners may respond similarly in terms of reproductive output under global change, but fitness and prognoses of population persistence and evolutionary performance can be inferred only rarely from examination of vegetative characters alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号